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Abstract

Being able to perform dynamic motions repeatably and reliably is an active research topic. The

present thesis aims to contribute to this by improving the accuracy of force-torque sensing

in robots. It focuses primarily on six axis force-torque sensors, although other sources of

force-torque sensing are explored. Force sensing technologies, calibration procedures of these

sensors and the use of force-torque sensing in robotics are described with the aim to familiarize

the reader with the problem to solve. The problem is tackled in two ways: improving the

accuracy of six axis force-torque sensors and exploring the use of tactile sensor arrays as

force-torque sensors. The contributions of this thesis are : the development of the Model Based

In situ calibration method for improving measurements of sensors already mounted on robots

and the improvement in performance of the robot as a consequence; the design of a calibration

device to improve the reliability and speed of calibration; and the improvement of force sensing

information of a capacitive tactile array and its use on a robot as force-torque information

source. The developed algorithms were tested on the humanoid robotic platform iCub.





Prologue

Robots are expected to perform highly dynamical motions. Being able to perform these motions

repeatably and reliably is an active research topic. Achieving this type of motions requires

information of the interaction forces that exist whenever a contact is established. This thesis

aims to help to research this type of motions by enriching the quality of the information obtained

during this kind of behaviors, more specifically force related quantities.

Science fiction has given us a lot of expectations in what a robot should look like and be able

to do. It is not uncommon to see a robot walk, run, jump and even parkour in movies and

cartoons. There are in fact some videos of actual robots starting to reach some of these dynamic

behaviors. But in reality, we are far from reaching a point where a robot can move around in

a reliable way. As mentioned by Boston Dynamic’s CEO Marc Raibert, "In our videos we

typically show the very best behavior. It’s not the average behavior or typical behavior. And

we think of it as an aspirational target for what the robots do.º

A crucial part of these motions is the interaction of the robot with other objects or the environ-

ment. Whenever an interaction happens there exist an exchange of forces. As humans, we are

only able to walk thanks to the gravity force keeping us anchored to the ground and the friction

forces allowing us to propel forward.

A robot, as the machine that it is, bases its behavior on programmed responses to perceived

stimulus. Independently of how the behavior is programmed a considerable part of the reliabil-

ity comes from the perceived stimulus. When the stimulus is limited to a start command the

behavior is executed in feedforward. In this way, the robot has no way of understanding if it

has full filled its goal or not. By giving relevant information to the robot it is possible to create

a self-correcting action to achieve the desired behavior. This relevant information is called

feedback.

The nature of what is considered relevant information depends on the nature of the behavior

involved. As mentioned, whenever there is an interaction with other objects or the environment

there exist forces. It is then straight forward to see that knowledge about the exchanged forces

is relevant information for dynamic behaviors.

Force-torque sensing is the ability to sense or measure the forces and torques exchanged
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between two objects. There are mainly two interesting force sensing quantities for robots, the

joint torques, and the contact forces.

The joint torques have a direct relationship with the output of the motors at the joints. Therefore,

joint torques are relevant information for programming the behavior of the motors. This is

usually done through joint torque controllers that benefit greatly from using joint torque values

as feedback.

On the other hand, contact forces are the actual forces and torques exchanged at the contact

location when an interaction between objects is happening. This information has a direct

relationship with the effect an object can have on another object or in itself by exploiting the

contact.

To measure this quantities many different kinds of sensors have been developed. A sensor is a

device that receives a stimulus and responds with an electrical signal [43]. Based on the type

and amount of forces that they measure, force sensors can be classified in single-axis force

sensor, single-axis torque sensor, and multi-axis force-torque sensor. These sensors are typically

placed near the place in the robot where the information might be more useful. For single-axis

torque sensors, a common location is near the joints to provide direct feedback on the joint

torque. For single-axis force sensors and multi-axis force-torque sensors, the location is usually

near the end effectors to measure the contact forces. A special type of multi-axis force-torque

sensors are the six axis force-torque (FT) sensors which convey a complete information of a

contact force by providing measurements of the three axes of forces and three axes of torques.

A force sensor does not measure the force directly. Measuring a force is the result of converting

other physical phenomena that varies in response to force into an electrical signal. The rela-

tionship between the change of the phenomena to an actual force value is obtained through a

process called calibration. The accuracy of the sensor is then a result of the calibration process.

It requires the mathematical model of the phenomena ( or a good approximation) and known

stimuli paired with the corresponding sensor’s response.

The most common phenomena used in force-torque sensors is the change in resistance of silicon

due to strain. In more technical words, the piezoresistive response to strain of semiconductor

material. This material also changes resistance with temperature. Because of this, depending

on the calibration procedure, the sensor might suffer from temperature drift. Temperature drift

is defined as the undesired change of measurement due to changes in temperature.

Tactile sensors are based on similar phenomena used for force-torque sensors. But, since the

main objective of tactile sensors is the detection of contact and not the measuring of force, they

are not accurate enough to be directly used as force-torque sensors. The accuracy required for

using them as force-torque sensors might be achieved with the proper calibration procedure.

A pair of known stimuli with the sensor response is called a calibration point. A set of cal-
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ibration points is a calibration data set. In this thesis, calibration procedures are classified

depending on the place the calibration data set is acquired. If the calibration data set is acquired

in the system (or structure) in which is meant to be used, it is referred to as in situ calibration.

Instead, if the sensor is calibrated in a structure then removed and mounted somewhere else for

its use, it is referred to as ex situ calibration.

In standard operating conditions, a decrease in the effectiveness of the calibration may occur in

months. Leading companies for force-torque (FT) sensors [11, 142] recommend calibrating the

sensors at least once a year. The calibration done by the manufacturer is typically an ex situ

calibration. As such, it usually implies that the sensor must be unmounted, sent back to them,

calibrate the sensor in a special setup, receive the sensor again and then mount it.

FT sensors are prone to change performance once mounted in a mechanical structure such

as a robot [130, 8]. Different methods have been developed to re-calibrate the sensors once

mounted. These in situ calibration methods allow to perform the calibration in the sensor’s

final destination, avoiding the decrease in performance that arises from mounting and removing

the sensors from its working structure. The relevance of calibrating in situ has become evident,

making in situ calibration part of the service provided by some FT sensor companies [71].

At present, robots still struggle with handling unexpected interactions with their environment,

as it could be observed at the DARPA Robotics Challenge Finals in June 2015 [32]. During

the challenge, most of the teams could not take advantage of having FT sensors. The Boston

Dynamics ATLAS’ six axis FT sensors were not used or fully exploited due to the bad quality

of sensors measurements, to the point that the IHMC and MIT teams used the FT sensors only

as binary contact sensors.

Therefore the objective of this thesis is to provide the knowledge and algorithms needed to have

a reliable and accurate estimation of contact forces and joint torques exchanged between the

robot, the environment, and other objects. It focuses on improving the measurement reliability

of the six axis FT sensors. This allowed robots to perform better dynamical motions. This

was achieved by developing novel in-situ calibration methods and proposing a new ex situ

calibration device. Other sources of force-torque information, such as tactile arrays, were

explored. This should enable the research community to better exploit force-torque sensing in

complex structures such as robots.

There are three intermediate goals to achieve the general objective previously described:

1. Deep understanding of force-torque (FT) sensors.

2. Improvement of force-torque sensors’ performance.

3. Increase performance of dynamical motions in robots through the use of force-torque

sensing.
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To gain a deep understanding of the FT sensors the following actions were taken:

• Study the functioning principles of the different six axis FT sensing technologies.

• Understand how force-torque sensing is used in robots.

• Investigate how six axis FT sensors are usually calibrated.

• Analyze the performance of six axis FT sensors mounted on robots.

Seeking to improve force-torque sensors’ performance the strategies implemented were:

• Development of in-situ calibration methods.

• Design of an improved ex-situ calibration method.

• Investigate the feasibility of using tactile sensors as force-torque sensors.

Aiming to increase the performance of dynamical motions in robots through the use of force-

torque sensing, it was considered necessary to:

• Allow the articulated body to exploit the improved measurements.

• Evaluate the result of improving measurement quality.

• Allow the possibility to exploit other sources of force-torque information, such as tactile

sensor arrays.

• Allow the robot to estimate individually forces when more than one force is acting on

the same robot.

What follows is a brief summary of the thesis structure. It can broadly be considered to be

divided into two parts. One is the accumulation of knowledge deemed necessary to achieve

the objectives. The other is the result of the research carried out during the last three years

in a collaborative Ph.D. between Istituto Italiano di Tecnologia and Universita degli studi di

Genova.

Chapters belonging to part one are:

• Chapter 1 seeks to provide information on the force sensing technologies starting from

the principles of measuring force to the most common technologies used in six axis

force-torque sensors. The available commercial options for robots are presented in a

small survey of commercial solutions. Finally, the general use of force-torque sensing in

robotics is depicted.
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• Chapter 2 describes the use of force-torque sensing in robotics. A method to exploit

the force-torque sensing for estimating joint torques and contact forces is detailed. The

current performance of robots doing dynamic motions is also depicted.

• Chapter 3 describes what is calibration. It also shows the models used to calibrate six axis

FT sensors and capacitive tactile sensor arrays. Some examples of different calibration

procedures both ex situ and in situ are mentioned. It also describes the reasons behind

the presented research and the conditions in which it can be applied.

The chapters belonging to the second part are:

• Chapter 4 aims to provide a detailed description of the tools developed to evaluate the

performance of a six axis FT sensors once it is mounted on a robot. This is followed

by the results of some tests using the aforementioned tools and a description of typical

issues that arise when using these type of sensors.

• Chapter 5 displays improvements in the measurements of six axis FT sensors through

in situ calibration. An algorithm taking advantage of the knowledge of the robot model

was developed to perform in situ calibration. A detailed description of the calibration

algorithm and the results are shown. This is the main work of the thesis, since improving

the measurements of the sensor while mounted on the robot, leads to a direct impact on

its performance.

• Chapter 6 presents an alternative solution to the current ex situ calibration of the lab,

based on insights gained from the in situ algorithms. The current calibration method is

also described and compared to some extent with the proposed solution.

• Chapter 7 explores the possibility of using the skin as a FT sensor. Algorithms to estimate

contact locations, external forces, and joint torques using distributed tactile sensor arrays

(artificial skin), kinematic sensors and a single IMU without the need for force-torque

sensors are presented.

• Chapter 8 confronts the results with the objectives and mentions the future work.

Some of the results contained in this thesis have been or are about to be published in

research papers [8, 7, 6].
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Chapter 1

Force-torque Sensing

The main reference for the relation between motion and forces are the three Newton laws of

motion. These laws are:

1. Every object in a state of uniform motion tends to remain in that state of motion unless

an external force is applied to it.

2. Force is equal to the change in momentum per change in time. For a constant mass, this

is:

F = ma, (1.1)

where m (kg) is an object’s mass, a ( m

s2 ) its acceleration and F (N) the applied force.

3. For every action, there is an equal and opposite reaction.

The second law is the most powerful of Newton’s three Laws because it allows quantitative

calculations of dynamics. Motion involves actions and interactions of a variety of forces. Given

the intrinsic relationship between motion and forces, no measurement is more fundamental to

understand and perform dynamical motions than the measurement of force and force related

quantities (mass, acceleration, pressure, etc). Force sensing is the ability to sense or measure

the forces exchanged between two objects. The system that performs the force sensing is a

force sensor. A sensor is a device that receives a stimulus and responds with an electrical

signal [43]. Force-torque sensing is a special kind of force sensing, it is described as the ability

to sense or measure the forces and torques exchanged between two objects. It allows to have a

complete description of the sum all of forces and torques between the two bodies at the location

where the contact is happening.

In this Chapter, the different technologies used in force sensing are described as well as the

principles in which they are based on.



2 Force-torque Sensing

1.1 Force Sensing Technologies

An unknown force can be measured using one of the following means [31]:

1. Balancing it against the known gravitational force on a standard mass, either directly or

through a system of levers.

2. Measuring the acceleration of a body of known mass to which the unknown force is

applied.

3. Balancing it against a magnetic force developed by the interaction of a current carrying

coil and a magnet.

4. Transducing the force to a fluid pressure and then measuring the pressure.

5. Applying the force to some elastic member and measuring the resulting deflection.

6. Measuring the change in precession of a gyroscope caused by an applied torque related

to the measured force

7. Measuring the change in natural frequency of a wire tensioned by the force.

All the previously described force sensing methods are mainly applied to static or slowly

varying loads. The method number 5 is widely used for both static and dynamic loads of

frequency up to many thousand hertz. Sensors based on method 5 are essentially spring-mass

systems with damping. They differ in the geometric form of "spring" employed and in the

transducer used to obtain an electrical signal. In modern sensors, the most commonly used

method is 5, while 3 and 4 are used occasionally [42].

In many sensors, force is developed in response to some stimulus s. The force is not

directly converted into an electric signal, thus some additional steps are usually required. A

typical force sensor is a combination of a force-to-displacement transducer and a displacement

sensor that converts displacement to an electrical output. In other words, a typical force sensor

combines an elastic element (spring, polymer lattice, silicon cantilever, etc.) and a gauge for

measuring the degree of the element compression or strain for the purpose of converting it to

an electrical output signal E. The trend in modern sensor design focuses on the integration of

sensing components with signal conditioning, converting, and communication circuits [43].

Such a combination is called a sensing module, Fig. 1.1. Typical sensing element produces

low-level analog signals, its output signals need amplification, filtering, impedance matching,

and perhaps a level shifting, before it can be digitized. All these functions are performed by
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signal conditioners. After conditioning, the signal is converted to digital data using the analog-

to-digital converter (ADC). Although all components of the sensing module are important, the

thesis focuses more in detail on the elastic element and the displacement sensor.

Their ability to measure dynamic loads coupled with the possibility of a large measurement

bandwidth makes strain gauges, plus some elastic element, the main source of force-torque

sensing in robotics.

Fig. 1.1 Block diagram of sensing module [43].

1.2 Elastic Element

Elasticity is the ability of an object or material to resume its normal shape after being stretched

or compressed. Most materials which possess elasticity in practice remain purely elastic only

up to very small deformations. The elastic element is the part of the force sensor that directly

responds to the force stimuli.

The relationship between the elastic deformation and forces is given by Hooke’s Law.

Hooke’s law is a law of physics that states:

F = k∆x, (1.2)

where k ( N
m

) is a constant of the elastic element, ∆x (m) is the change in distance of the elastic

element.

Stress σ (Pa) is expressed in terms of force applied to a certain cross-sectional area A (m2)

of an object,

σ = F/A. (1.3)
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There are two types of stress depending on the orientation of the force with respect to the

cross-sectional area. If the force is perpendicular to the area then it is called normal stress σn,

Fig. 1.2a. The force can be tensile or compressive depending on the direction of the force. By

convention, a compressive force is taken to be negative, which yields a negative stress [20].

Instead, if the force is applied parallel to the cross-sectional area is called shear stress στ .

Applying the same stress formula for shear stress results in the average shear stress.

(a) Stress.
(b) Strain.

Fig. 1.2 Effect of a force on a fixed body.

Strain (ε) is the deformation of a physical body under the action of applied forces, Fig. 1.2b.

It has no units. Strain is calculated as

ε =
li − l0

l0
=

∆l

l0
, (1.4)

where l0 (m) is the initial length and li (m) is length after applying a load. Strains are classified

as either normal or shear. A normal strain εn is perpendicular to the face of an element, and a

shear strain ετ is parallel to it. These definitions are consistent with those of normal stress and

shear stress.

An object subjected to stress will experience some strain as a result. The relationship between

the stress and strain of a particular material is known as the stress-strain curve, Fig. 1.3. It is

unique for each material and is found by recording the amount strain at distinct intervals of

tensile or compressive stress. The elasticity of materials is described by a stress-strain curve.

An elastic modulus (also known as modulus of elasticity) is a quantity that measures an

object’s resistance to being deformed elastically (i.e., non-permanently) when a stress is applied

to it. The elastic modulus of an object is defined as the slope of its stress-strain curve in the

elastic deformation region. A stiffer material will have a higher elastic modulus.

There are various elastic moduli. All of which are measures of the inherent elastic properties

of a material as the resistance to deformation under an applied load. The various moduli apply

to different kinds of deformation.

Young’s modulus E (Pa) is

E =
σn

εn
(1.5)
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, whereas the shear modulus E (Pa) is

G =
στ

ετ
. (1.6)

Fig. 1.3 Stress-strain curve.

Hooke’s law usually applies to any elastic object, of arbitrary complexity, as long as both

the deformation and the stress can be expressed by a single number. Using the elastic moduli,

Hooke’s law becomes:

σn = Eεn (1.7)

στ = Gετ (1.8)

Depending of the orientation of the force with respect to the cross-section area, an object

can be subjected to normal and shear stress simultaneously due to the same force.

Isotropy is uniformity in all orientations. Glass and metals are examples of isotropic

materials [20]. For isotropic materials, the complete characterization of the elastic properties,

requires at least two constants, the Young and shear moduli.

In the design of the elastic element, considerations have to take into account the geometry

and material of choice. This is done with the aim of keeping the elastic element in the linear

section of the stress-strain curve where Hooke’s law is still valid.
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1.2.1 Examples of elastic elements in force-torque sensors

A comprehensive classification of elastic elements consisting of twelve types of elastic elements,

based on their shape, strain gauge positioning and force range has been proposed in [153].

Another way of classification is based on their sensitivity to some specific kind of strain:

• Tension-compression or direct (Fig. 1.4a): A columnar element may be in the form of a

solid or hollow cross-section having a circular or square shape. To achieve a four-arm

bridge circuit two gauges are aligned parallel to the load axis and two gauges aligned at

90°. The cross-sectional area of the column increases in compression and decreases in

tension. This is a typical dual sensing elastic element.

• Bending (Fig. 1.4b): A simple cantilever is an example of a bending load cell. When

a force F or a torque M is applied to the free end, it deflects the beam so producing

opposite strains at the top and bottom faces. Strain gauges may be installed near the root

of the beam to sense tensile and compressive strains.

• Shearing (Fig. 1.4c): Shear elements are based on the fact that shear stresses are propor-

tional to the applied force and are independent of loading position. The shear stresses

themselves cannot be measured so pairs of gauges with their grid lines aligned at ±

45° to the neutral axis are installed on both sides of the central portion of the beam to

measure principal strains.

(a) Tensile/Compressive ele-

ment. (b) Bending element. (c) Shearing element.

Fig. 1.4 Elastic element by sensitivity.

These simple elements can be combined to have sensitivity for forces with arbitrary ori-

entation. The preferred elastic element seems to be variations of the cantilever beams in

a cross-beam configuration [97, 139, 109, 143, 135, 145, 4, 64]. Cantilever beam is fixed

only on one side. Using them in a cross-beam configuration permits a combination of ten-

sile/compressive and bending elements. Combining multiple elastic elements with this shape

has also been explored [98]. They profit from the difference in rigidity between the two

elements. With this, they achieved a sensing range from 0.01 N to 1000 N. Some variations of

the cross-shaped are shown in Fig.1.8.
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Fig. 1.5 Cross-shaped elastic elements.

(a) Strain due to x-axis

stress.

(b) Strain due to y-axis

stress.

(c) Strain due to z-axis

stress.

(d) Strain due to shear-

ing stress.

Fig. 1.6 Finite element analysis of choss-shaped elastic element [109].

Another favored shape are cantilever beams in a "Y" configuration [35, 70, 104, 132].

Examples are shown in Fig. 1.7.

Fig. 1.7 Y-shaped elastic elements.

Besides these two main shapes, other different shapes have been explored in combination

with other materials and different sensing technologies. An "E" shape elastic element was used

aiming to obtain high measurement sensitivity, overload protection, good linearity, and weak

couplings between components [79]. Some 3D-printed S-shaped beams have been used on a

capacitive force-torque sensor [76], Fig. 1.8a. Another elastic element used are silicon rubber

cubes on a lightweight compliant optical force-torque sensor [2], Fig. 1.8c. Also using silicon

rubber, a semi-sphere of rubber has been used coupled with optical technology [128].
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(a) 3D-printed structure.

(b) Convex silicon rubber sur-

face [128]. (c) Silicon rubber cubes.

Fig. 1.8 Other elastic element shapes.

Solving a problem of elastic deformations means one should be able to write down all the

components of the stress and strain tensors using information on external forces and the elastic

moduli. For complex structures, this is usually approximated using finite element analysis,

Fig. 1.6.

1.3 Strain Gauges

Several physical effects can be used for measuring strain. Among these effects, there are optical,

piezoelectric , and capacitive effects, but by far the most popular is piezoresistive effect [42].

Fundamentally, all strain gauges are designed to convert mechanical motion into an electronic

signal. Thus, a strain gauge serves as a transducer that measures a displacement of one section

of a deformable component with respect to its other part.

1.3.1 Piezoresistive Strain Gauges

A typical piezoresistive strain gauge is an elastic sensor whose resistance changes with the

applied strain (unit deformation), see Fig. 1.9. When a load is applied to the surface, the

resulting change in surface length is communicated to the piezoresistive element and the

corresponding strain is measured in terms of the electrical resistance, which varies linearly

with strain [141]. Since all materials resist deformation, a force must be applied to deform the

material. Hence, electrical resistance can be related to the applied force. That relationship is

generally called the piezoresistive effect and is expressed through the gauge factor Sε of the

conductor
dR

R
= Sεε, (1.9)

where R (Ω) is the resistance, dR (Ω) is the change in resistance. For many materials Sε ≈ 2

with the exception of platinum for which Sε ≈ 6 . For small variations in resistance not
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Gauge factor Resistance TCR1

Material Sε (Ω) (◦C−110−6)

57 % Cu–43 % Ni 2 100 10.8

Platinum alloys 4.0–6.0 50 2160

Silicon -100 to +150 200 90000

Table 1.1 Piezoresistive Strain gauges characteristics [42].

exceeding 2% (which is usually the case), the resistance of a metallic wire can be approximated

by a linear equation:

R = Ro(1+Sεε), (1.10)

where Ro (Ω) is the resistance with no stress applied. From the materials shown in Table 1.1,

Sε is constant in Ni for a wide range of strain, it can be used under 260 ◦C. Platinum alloys are

used in high-temperature applications. For semiconductive materials, the relationship depends

on the doping concentration, it allows for much higher gauge factors.

Fig. 1.9 A piezoresistive strain behavior.

The ideal piezoresistive strain gauge would change resistance only due to the deformations

of the surface to which the sensor is attached. However, in real applications, temperature,

1TCR stands for temperature coefficient of resistance.
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material properties, the adhesive that bonds the gauge to the surface, and the stability of

the metal all affect the detected resistance. In this context, the term stable refers to the

stability of their electron configurations as atoms and as ions. Stable metals do not react with

the components of air like oxygen. nitrogen, carbon dioxide, moisture, etc. Because most

materials do not have the same properties in all directions, a knowledge of the axial strain

alone is insufficient for a complete analysis. Different types of strain require different strain

gauge arrangement. When selecting a strain gauge, one must consider not only the strain

characteristics of the sensor but also its stability and temperature sensitivity. Unfortunately,

the most sensitive strain gauge materials, which are the semiconductors, are also sensitive to

temperature variations and tend to change resistance as they age. For tests of short duration, this

may not be a serious concern, but for continuous measurement, one must include temperature

and drift compensation [99].

Metallic foil Strain Gauge

The metallic foil-type strain gauge consists of a grid of wire filament (a resistor), bonded

directly to the strained surface by a thin layer of epoxy resin. Metallic Foil gauges have a low

gauge factor. Therefore they require a higher amplification step.

These type strain gauges where the first type of strain gauge technology. It was first developed

in 1938 [99], and has been replaced by silicon strain gauge as main force sensing technology in

robotics. An image of a typical metallic strain gauge can be seen in Fig. 1.10a.

(a) A metallic strain gauge.
(b) A semiconductor strain gauge.

Fig. 1.10 Tactile Sensors.
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Semiconductor Strain Gauge

Semiconductor strain gauges are based upon the piezoresistive effects of silicon or germanium.

Bonding it to the strained surface needs extra care since only a thin layer of epoxy is used to

attach it. The size of a semiconductor strain gauge is much smaller and the cost much lower

than for a metallic foil sensor. An example can be appreciated in Fig. 1.10b. While the higher

unit resistance and sensitivity of semiconductor sensors are definite advantages, their greater

sensitivity to temperature variations and tendency to drift are disadvantages in comparison to

metallic foil sensors. This sensing technology is currently the most used.

Wheatstone Bridge

The Wheatstone Bridge is the name given to a combination of four resistances connected to give

a null center value. The circuit can be seen in Fig. 1.11. It can be expressed in mathematical

terms as:
EO

EI
=

R1

R1 +R2
−

R4

R3 +R4
=

R1 ·R3 −R2 ·R4

(R1 +R2)(R3 +R4)
(1.11)

where EO (V) is the output voltage, EI (V) is the input voltage and Ri (Ω) is the value of

resistance at the i-th position. If R1 = R2 = R3 = R4 or R1
R2

= R3

R4
then EO is zero. The resistive

elements in the array can have a fixed or variable resistance value.

Fig. 1.11 The Wheatstone Bridge circuit.
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(a) Full Bridge. (b) Half bridge. (c) Quarter bridge.

Fig. 1.12 Types of Wheatstone Bridges.

Depending on the number of variable resistances or strain gauges, it can be classified in

a full bridge, half bridge or quarter bridge, see Fig. 1.12. If the variation of resistance ∆Ri is

much smaller than the value of Ri, second order factors can be disregarded. This is typically

the case for strain gauges.

This arrangement of resistances is well suited for the measurement of small changes in resistance

and is, therefore, also suitable for measuring the resistance change in a strain gauge. Another

benefit of the Wheatstone Bridge is the fact that it can be arranged to compensate for interference

effects, such as temperature, pressure, humidity, magnetic fields, radiation, etc. [57].

The compensation of the temperature expansion is correct only if some conditions are strictly

fulfilled. These include:

• symmetry of the bridge,

• identical temperature coefficients of all materials used,

• identical resistances of all parts in the bridge arms which are combined for compensation,

• identical temperatures on all compensating elements in the bridge circuit,

• identical active grid areas.

1.3.2 Capacitive-Pressure Sensors

In simple words, capacitance is the ability of a system to store an electric charge. The capacitive

effect can be calculated as:

Ca =
q

E
, (1.12)

where q (A) is the current, E (V) is the voltage and Ca (F) is the capacitance . Capacitors are

built with two conductive materials with some space in between them. The space can be in

vacuum or with some dielectric material. A dielectric material is an electrical insulator that can
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be polarized by an applied electric field.

The capacitance is a function only of the geometry of the design (e.g. area of the plates and

Fig. 1.13 Flat Capacitor.

the distance between them) and the permittivity of the dielectric material between the plates of

the capacitor.

A variable capacitance pressure transducer has a capacitive plate (diaphragm) and another

capacitive plate (Electrode) fixed to an unpressurized surface gapped a certain distance from

the diaphragm, Fig. 1.13. A change in pressure will widen or narrow the gap between the two

plates which varies the capacitance. This change in capacitance is then converted into a usable

signal for the user [123]. If the shape of the capacitor is flat, the capacitance can be estimated

as:

Ca = κε0
A

d
, (1.13)

where κ ( F
m

) is the dielectric constant of the material, ε0 is a constant if the sensor were found

in vacuum, A (m2) is the area of the plates and d (m) is the distance between the plates.

Some dielectrics have a very uniform dielectric constant over a broad frequency range (for

instance, polyethylene), while others display strong negative frequency dependence, that is, the

dielectric constant decreases with frequency. Temperature dependence is also negative [43].

Examples of force-torque sensors using this technology can be found in [76, 69]. The measuring

range is limited to values below 30 N.

1.3.3 Piezoelectric Strain Gauge

The piezoelectric effect is the generation of electric charge by a crystalline material upon

subjecting it to stress, or more accurately a redistribution of the electric charge. The charge
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generated is proportional to an applied force,

Q = κeF, (1.14)

where Q (C) is the charge, κe ( C
N

)is the piezoelectric coefficient along the orthogonal axes of

the crystal cut and F (N) is the applied force.

A piezoelectric strain gauge can convert a changing force into a variable electrical signal,

while a steady state force produces no electrical response. Therefore it responds only to

changing forces. If the stress is maintained, the charges will be neutralized by the internal

leakage. So after some time the piezoelectric material will not send any signal.

Since an applied force can change some properties of the piezoelectric material when the

sensor is supplied with an excitation signal, a different property can be exploited for more

accurate force sensing.

Certain cuts of a quartz crystal, when used as resonators in electronic oscillators, shift the

resonant frequency upon being mechanically loaded. The frequency shift induced by the force

is due to nonlinear effects in the crystal. The change of frequency ∆ f r (Hz) can be described

as:

∆ f r = F
K f r2

on

l
(1.15)

where F (N) is the applied force, K is a constant, f ro (Hz) fundamental frequency when

unloaded, n is the number of the overtone mode (it allows to use the quartz in a frequency

higher than f ro and l (m) is the size of the crystal [42]. An image of this kind of sensor can be

seen in Fig. 1.14.

Fig. 1.14 A piezoelectric strain gauge [42].

A fundamental problem in all force sensors that use crystal resonators is based on two

contradictory demands. On one hand, the resonator shall have the highest possible quality

factor which means the sensor has to be decoupled from the environment and possibly should
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operate in vacuum. On the other hand, application of force or pressure requires a relatively

rigid structure and substantial loading effect on the oscillation crystal, thus reducing its quality

factor.

1.3.4 Optical Force Sensor

Although not considered strictly strain sensors, they work by a similar principle of measuring

the deformation or displacement of a body. An optical force sensor is typically composed of a

light source, a photosensor, a solid object modifying amount of light incident on the optical

detector are necessary to measure displacement between an unmovable and a flexible part of

the optical sensor.

The photosensors have drawbacks such as nonlinearity and temperature sensitivity, however,

they are considerably reliable, cheap and allow simplifying the construction of the design. A

displacement can be detected by interrupting light between source and detector, changing the

intensity of reflected light or relative movement of source and detector [56]. In this cases the

relationship with the strain is completely dependent on the geometry of the sensor. Lately some

Fig. 1.15 An optic force-torque sensor [128].

force-torque sensors based in optical technology have been developed. Their aim is to have an

easy manufacturing process, durability, scalability, low cost and having good sensitivity [128].
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A drawback is that the behavior is nonlinear which complicates the calibration procedure. They

have yet to become widely used in applications of 100 N or more.

Fiber Optic Sensor

Fiber optic sensors offer a promising alternative to electric measurement systems. For the fiber

optic sensor the optical detector is embedded into a holder that acts as a resilient component

(spring). Fiber optic FT sensors have recently been presented with varying degrees of freedom

(DoF). Fiber optic sensing principles can be categorized by the physical value being measured.

Among others the most frequently used measured variables are intensity and wavelength.

Light is reflected back into the fiber by a mirror connected to a deformable structure. The

intensity of reflected light depends on the axial and angular deformation of the structure. The

reflected intensity is measured and interpreted as axial force. Bend losses in the fiber cannot

be distinguished from intensity variation by the measuring device. Measuring the wavelength

instead of intensity offers the possibility to become almost independent of losses in the optical

fiber. Aside from certain material constants and design parameters the reflected wavelength is

determined by mechanical and thermal conditions as given by

∆λ

λ0
= (1− pe f f )e+

[

(1− pe f f )α +
1

n0

dn

dT

]

∆T, (1.16)

with nominal wavelength λ0 (m), photoelastic coefficient of the fiber pe f f (Pa−1), thermo-optic

coefficient dn
dT

(K−1), effective refractive index n0, linear strain in direction of the fiber axis e,

and temperature change ∆T (K).This type of force sensing technology ranges up to 20 N [53].

1.4 Tactile Sensor Technologies

In general, the tactile sensors belong to the special class of force or pressure transducers that

are characterized by small thicknesses.

Tactile sensors sensing technologies, similarly to force sensors, can be: capacitive, piezoresis-

tive, piezoelectric, magnetic and optical.

• Piezoresistive sensors (e.g. [61, 124, 68]) are made of materials whose resistance changes

with the applied force and can therefore vary the voltage of the signal.

• Capacitive sensors (e.g. [138, 85]) rely on their change in capacitance value as the

dielectric between the two conductive plates is compressed. The capacitance value

variation can be interpreted by the control circuit.
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• There are piezoelectric sensors (e.g. [118]) that create a voltage signal as they are

deformed due to their piezoelectric properties.

There are more types of tactile sensors (optical, magnetic etc.), but the mentioned ones are the

most commonly used in the industry [47, 46, 150].

(a) Resistive 3D shaped tactile

sensor [73].
(b) A capacitive touch sensor.

(c) A capacitive slip tactile sen-

sor.

Fig. 1.16 Tactile Sensors.

The tactile sensors loosely can be subdivided into several subgroups [41].

• Touch sensors detect and/or measure contact forces at defined points. They are binary,

namelyÐtouch or no touch. It can be analog and use a force measure for having a trigger

threshold behavior.

• Contact Sensors detect physical coupling between two objects, regardless of forces. An

example is a capacitive touchscreen on a touch-sensitive monitor (e.g., smartphone).

• Spatial Sensors detect and measure the spatial distribution of forces perpendicular to

a predetermined sensorized area. A spatial-sensing array can be considered to be a

coordinated group of touch sensors.

• Slip Sensors detect and measure the movement of an object relative to the sensor. This

can be achieved either by a specially designed slip sensor or by the interpretation of the

data from a touch sensor, contact sensor, or a spatial array.

Since their aim is not to measure forces, typically they are not very accurate when using it for

force-torque sensing.
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1.4.1 Tactile sensor arrays

Tactile sensor arrays, also known as artificial skins, are used in many fields of engineering

including neuroprosthetics, humanoid robotics, and wearable robotics [82]. They can be

classified as spatial tactile sensors. As implied by the name, they are arrays of tactile sensors

arranged, typically, in a distributed manner over a surface. This forms a discrete area where

tactile sense is possible. The area is not fully cover and contains gaps between the individual

tactile sensors. In humanoid robotics, the artificial skins are usually mounted on the surface of

robots in order to detect physical interactions with the external world. They are mainly used to

detect contacts. Some attempts have been done to use them as force sensors [66].

Fig. 1.17 A tactile sensor array.

1.5 Force Sensors

Even if there are many possible sensing technologies, the actual sensors used in the robots,

regarding force-torque sensing, can be mainly divided into three categories:

• single-axis force sensor

• single-axis torque sensor

• multi-axis force-torque sensor

In robotics, single-axis torque sensors are typically installed at the joints. Joint torque

information is crucial because it is directly related to the motor actuating the joint, making

them essential feedback for force-torque controllers. Since joint torque sensors provide this

information directly, they are commonly used.

Single-axis force sensors are only able to give information about one axis. Multi-axis

force-torque sensors can easily give the same information and more.
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Six axis FT sensors have an arrangement of strain gauges designed to measure the forces

and torques sensed at the sensor frame. Six axis FT sensors give complete information about the

sum of the forces and torques exchanged between two bodies. As a result, six axis force-torque

sensors are able to directly convey information about interactions with the environment.

Although many robots have six axis FT sensors, they are not exploited to their full poten-

tial [32]. Since the six axis FT sensors have the most wasted potential, they are the main focus

of the thesis.

(a) A single-axis force sen-

sor.

(b) A single-axis torque sensor. (c) A six axis FT sensor.

Fig. 1.18 Force-torque Sensors.

1.5.1 Commercially Available Six Axis Force-torque Sensors

Looking at the main options in the market may allow to know the most used technology. This

way the impact of this research will be more widespread by focusing on that technology. Six

axis FT sensors are sold in a big variety of sizes and ranges. Its application span from medical

instruments to big industrial manipulators, this includes wearable robotics and other types of

robots.

What follows is a non-exhaustive comparison of commercial six axis FT sensors for robotics.

The comparison is summarized in Table 1.2. Even if the oldest technology is the metallic foil

strain gauge, only one company clearly states they use this technology. Among the sensors in

the comparison, most of them use the silicon strain gauge technology. Some companies offer

custom calibration upon request. Some specify the possibility to offer a Complex Loading

Calibration. By sacrificing some resolution the range of the sensor is guaranteed even under

loads that combine different axis.

Most of them recognize the issue of temperature drift as stated in the data sheets of the reviewed

sensors. Nonetheless, just a minority offer temperature compensation and in some cases only

upon explicit request.

It is important to point out that the information offered in the data sheets of the sensors is not
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standardized. Information such as bandwidth, non-linearity, type of sensing technology and

expected accuracy is not available for all sensors’ data sheets. Some sellers, offer different

calibrations for the same sensor. In those cases, only the calibration with the higher range is

displayed. The lack of standardized information prevents having a more in depth analysis of

the commercial solutions. The shape of the elastic element is not available in any of the data

sheets.

It is worth noticing that the Axia80, from ATI, offers dynamically changing calibration. It

goes from a high calibration range to a lower calibration range. Is interesting since usually the

accuracy is given as a percentage of the full scale. Therefore reducing the full scale reduces the

error in the measurements. From all sensors reviewed, it is the only one with this feature.

The range of six axis FT sensors in the comparison is limited to sensors that have a range

from 120 N to 1000 N for the forces and 3 Nm to 60 Nm for the torques. This range was

considering the requirements of a the 33 kg robot as middle point. The range for a 33 kg robot

is 500 N for the forces and 30 Nm for the torques.

Silicon strain gauges are the most common. This type of sensor is based on the piezoresistive

technology using semiconductors as material. For this kind of material, the model of the

resistance can be approximated to a linear model. As a result, a linear model is also the main

approach for the calibration model. Even if they are sensitive to temperature as well.
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Sensor Company Technology Fx, Fy (N) Fz (N) Tx,Ty (Nm) Tz(Nm) Dimension (mm) Accuracy Nonlinearity

AD2.5D AMTI Strain Gauges Transducers 2224 4448 112 56 63,5*63,5 N/A ± 0.2% Full Scale

FS6 AMTI Strain Gauges Transducers ±1100 ±2200 ±56 ±28 63,4*37,8 N/A ± 0.2% Full Scale

mini45 ATI Silicium strain gauges ±580 ±1160 ±20 ±20 15,7*45 0.1% to 5% due to temperature N/A

mini58 ATI Silicium strain gauges ±1400 ±3400 ±60 ±60 30*58 0.1% to 5% due to temperature N/A

75E20A4 JR3 Foil strain gauges ±1000 ±2000 ±200 ±200 50,8*191 ±0,25% N/A

FTS-Theta Shunk Silicium strain gauges ±2500 ±6250 ±400 ±400 61,1*155 ±1% N/A

3713A SunriseInstruments Strain Gauges Transducers ±400 ±800 ±14 ±14 25*135 N/A N/A

HEX-H OPTOFORCE Optically Measured deformation ±200 ±200 ±15 ±10 43.5*70 Can measure shear forces. More durability <2%

Barrett Barret Technology Silicium strain gauges ±80 ±135 ±2.75 ±2.75 12*90 N/A N/A

30E12A4 JR3 Foil strain gauges ±200 ±400 ±16 ±16 19*45 N/A 0.50%

FT300 Robotiq Capacitive ±300 ±300 ±30 ±30 37,5*75 1N,0.02Nm N/A

FTC050 Shunk opto-electric measurement ±450 ±400 ±7 ±15 48,5*161 N/A N/A

FT nano 25 Shunk Silicon Strain gauges ±250 ±1000 ±6 ±6 21,6*25 N/A N/A

kms40 Weiss Robotics Not mentioned ±120 ±120 ±3 ±3 27*76 N/A N/A

Silicon Strain Gauges ±500 ±900 ±20 ±20
Axia80 ATI

dual calibration ±200 ±360 ±8 ±8
25.4*104 <2% N/A

Table 1.2 Commercially available six axis FT sensors.
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1.6 Conclusion

The principles in which the force-torque sensing is based have been discussed as well as the

components of a force-torque sensor. In robotics, most force-torque sensors are based on the

relationship between elastic deformation and forces. The knowledge of principles in which they

are based, help anticipate some of the behaviors that can be expected from the sensors. The fact

that the silicon strain gauge is the main technology used in force-torque sensors coupled with

the knowledge that this technology is sensitive to temperature helps to anticipate the possibility

of temperature drift. The complexity of the arrangement of strain gauges in the elastic element

increases with the number of axes that are meant to be measured. This makes it hard to fulfill

all the requirements to perform temperature compensation at hardware level. Understanding the

principles behind tactile sensors allows having bases to believe they can be used as force-torque

sensors.

While knowledge of the principles gives a clear picture of what happens inside the sensor, the

way the sensors are actually used may help understand what should be expected from these

sensors. The way force-torque sensing is used in Robotics is discussed in Chapter 2.



Chapter 2

Use of force-torque sensing in Robotics

The principles in which force-torque sensing is based are important to understand the inner

workings of force-torque sensors. Having a clear picture of how they are used allows to

understand what is expected of these sensors. Among other things, the information of force-

torque sensing could be possibly used for controlling dynamic motions or ensure safety when

interacting with other bodies, especially humans. In other words, this information allows

knowledge of the contacts arising from interactions with the environment or other bodies and

could permit their capitalization. Providing force information to the robots is known to increase

their operational ability [116]. In this chapter, the main locations of force-torque sensors in

robotics are described. Some of the uses of these sensors are briefly mentioned. The dynamic

equations of motion are detailed to showcase the connection between force-torque sensing and

dynamic motions. The state of the art for estimation of force-torque sensing quantities such as

the contact forces and joint torques are provided. Lastly, the current state of dynamic motions

performed by robots is mentioned.

2.1 Location of Force-Torque sensors on Robots

Robots with their base fixed to the ground are called fixed based robots. Manipulators fall in

this category. When the base of the robot is not fixed to the ground it is called floating base.

Single axis torque sensors are position at the joints due to their direct connection with the

actuation torque. This makes them a typical force-torque sensor present in robots [122, 147, 83].

On the other hand, six axis force-torque (FT) sensors have been considered important in the

design of floating base robots, such as humanoids [104, 55, 9, 62, 63, 34]. Six axis FT sensors

have mainly two types of locations in robotics. Either at the end-effector position (wrists and

feet), see Fig. 2.1, or near the base of the robot, Fig. 2.2.
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FT sensors in the end-effector position are the most widely used. Being less affected by dynamic

effects and gravity they have less dynamic errors in the measurements [48]. Although the

position can be classified as end-effector, wrists and feet positioned FT sensors have different

expected uses. The wrist positioned sensors are mostly used for manipulation tasks while the

feet are meant to measure ground reaction forces. Manipulation tasks are mainly described

as slow and short motions. Contrary to wrist positioned sensors, the sensors at the feet could

experience fast or slow motions depending on the task. This has an impact in the expected

excitation of the sensors and the relevance of dynamic effects on the sensor.

FT sensors at the base position are useful to detect contacts along the kinematic chain [121, 48].

As such, they are able to detect unexpected collisions which might happen in both slow or fast

motions. In floating base robots the base is typically the torso or the pelvis. Therefore, FT

sensors in the shoulders or the hip are classified as near the base.

Regardless of their position this sensors are likewise affected by any extra weight and inertia

of a load at the end-effector [48]. By the nature of what they measure and considering their

typical locations in robots, six axis FT sensors and single axis torque sensors can provide direct

information about forces at contacts and torques at the joints respectively.

Installing force sensors on the robots can result in high maintenance prices, high noise values,

soft structure, and complication of the system’s dynamic equations. It is well known that

information of a force sensor has much noise. Furthermore, an unstable state can be caused by

the narrow bandwidth of force information by a force sensor. [67].

(a) Sensor at the wrist of a fixed base robot. (b) Sensor at the foot of a legged robot.

Fig. 2.1 Examples of force-torque sensors placed near end-effector positions.



2.2 Force-Torque sensor uses in robotics 25

(a) Sensor at the shoulder and hips of float-

ing humanoid.

(b) Sensor at the base and wrist on fixed based

robot.

Fig. 2.2 Examples of force-torque sensors placed near the base positions.

2.2 Force-Torque sensor uses in robotics

Six axis force-torque (FT) sensors have been used in robotics systems since the 1970’s [140].

They have been widely used in fixed based robots, mainly for fine motions [48]. The use of the

FT sensor information can be broadly classified into two depending if the information is used

directly or not.

Direct use of the information implies that the force or torque knowledge is used to generate

some response or take a decision. The simplest use of a force-torque sensor is as a threshold

for contact detection. By using a threshold on the forces on the z-axis, the foot in contact with

the ground is identified [107, 32]. This can be generalized to logic branching behaviors based

on thresholds on the value of the forces [48]. This includes the detection of collisions [51] or

slippage conditions [90].

Another way to use directly the information is by using it as feedback for control applications.

Joint torque sensors have been successfully used in control applications in the past [74]. It

has been shown that joint torque feedback is a fundamental part of force, compliance and

impedance control [1, 80, 136]. Conceptually, introducing joint torque sensor feedback in the

control loop is similar to introducing a six axis FT sensor feedback [48]. After a contact is

established it can be desirable to control the actual interaction between objects. A survey on

different interaction control schemes has been presented [22]. These schemes where proposed

and tested in fixed based robots. The need for the full dynamic model and force-torque sensing

is clearly stated. A six axis FT sensor near the end effector was used. This sensor can also

be used in control applications with multiple contact scenarios [59]. In some robots, the
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local stability is enforced by a proprietary stabilizer, which exploits the IMU and force-torque

sensor feedback [72]. Some whole-body controllers able to exploit contact information have

been developed in the past [119]. They require to sense the reaction forces at the contacts to

overcome effects of unmodeled friction at the joints due to the the gearing mechanisms.

The indirect use of the information implies that the information provided is processed to

generate other knowledge that is then used. Given the relationship between force, mass and

acceleration, force information can be used to estimate quantities related to mass and accelera-

tion. For this reason, FT sensors have been used to estimate inertial parameters in fixed based

robots [144, 108, 49, 101]. Measurements from six axis FT sensors have also been exploited to

track the center of mass(CoM), center of pressure (CoP) and zero moment point(ZMP) [111].

These quantities are commonly used in whole body controllers. They can be used as part of the

information required to estimate the momentum of robots [113]. Given the elastic nature of

the principles involved in FT sensors the information they provide have been also been used to

estimate micro-displacements [48]. Another indirect use of the information is the exploration

and shape reconstruction of objects [15].

Given the possible uses of FT sensing information, especially its use as feedback information,

FT sensors have permeated through many robotic research areas such as physical human-robot

interaction, exoskeletons, teleoperation, haptics, surgical robots, industrial robots, force control

and locomotion to name a few [122].

2.3 Robot Dynamics and force-torque sensing quantities

A robot can be seen as a combination of multiple bodies acting as a whole (a multi-body

system). An element q can be defined as the following triplet: q =
(

A pB,
A RB,s

)

where
A pB ∈ R3 denotes the position of the base frame with respect to the inertial frame, ARB ∈ R3×3

is a rotation matrix representing the orientation of the base frame, and s ∈ Rn is the joint

configuration characterising the shape of the robot. The velocity of the multi-body system can

be characterized as the triplet ν =
(

A ṗB,
A ωB, ṡ

)

= (vB, ṡ), where AωB is the angular velocity

of the base frame expressed w.r.t. the inertial frame, i.e. AṘB = S
(

AωB

)A
RB. A more detailed

description of the floating base model is provided in [131]. Applying the Euler-Poincaré

formalism [88] to the multi-body system, yields the following equations of motion for a robot

with nc distinct contacts with the environment:

M(q)v̇+C(q,v)v+G(q) = Bτ +
nc

∑
k=1

JT
Ck

fk (2.1)
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where M ∈ R(n+6)×(n+6) is the mass matrix, C ∈ R(n+6)×(n+6) accounts for Coriolis and cen-

trifugal effects, G ∈ Rn+6 is the gravity term, B = (0n×6,1n)
T is a selector matrix, τ ∈ Rn

is a vector representing the actuation joint torques, and fk ∈ R6 denotes the force applied

by the environment on the robot at the k-th contact, also called contact forces or external

force-torques. The Jacobian JCk
= JCk

(q) is the map between the robot’s velocity v and the

linear and angular velocity at the k-th contact link. From eq. (2.1), it can be seen that force

torque related quantities involved directly with the motion of a robot are the joint torques and

the contact forces, Fig. 2.3. Contact forces have great relevance in stabilizing the robot because

it is through these forces that the robot can actuate the underactuated degrees of freedom (DoF),

like the center of mass (CoM) position and the floating base orientation [23]. Using contact

force information is also possible to improve grasping task such as opening doors or turning

valves [77]. Likewise, the relevance of joint torques is derived from its relation with the output

of the motors. Therefore information of these quantities is crucial for controlling the dynamic

motions of a robot. Since there is a direct relationship between force and acceleration, the more

dynamic the motions more important it is to have accurate force sensing.

Fig. 2.3 Joint torque and contact force in a robot.

Depending on the available information, it is possible to use eq. (2.1) to estimate the joint

torques, the contact forces or both. What follows is a small review of the state of the art on

contact force and joint torque estimation. Using end-effector FT sensors for contact force and

joint torque sensors for joint torque values are not included in the review since they measure
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these quantities. This means there is no estimation. Some of the approaches are able to estimate

both type of quantities. The different solutions presented use different combinations of the

following sensors: tactile sensors, near base six axis FT sensors, inertial measuring units (IMU),

encoders, current sensors, cameras, and joint torque sensors.

2.3.1 Contact Force Estimation

Many approaches have been developed to estimate contact forces. They typically separate

this problem in three phases: contact detection, contact location estimation, and contact force

estimation. This corresponds to the first three stages of the collision event pipeline [51].

A natural solution for the first two phases of the contact force estimation is the use of distributed

tactile sensing. Some attempts have been done to calibrate these sensors to obtain also the

force at the contact [23, 28, 68]. In these cases, FT sensor information was used to calibrate

the tactile arrays. Therefore the accuracy of the calibrated skin will at best be as good as

the accuracy of the sensor used to calibrate it. These solutions are able to estimate multiple

contacts.

There have been many solutions to contact force estimation based on the momentum-

based residual signal concept [81]. The residual is calculated as the difference between the

generalized momentum of the robot and the expected generalized momentum due to the

commanded torque. This concept sets threshold values for the residual signal. When the value

is exceeded it is considered that a contact is detected. The direction of the contact is also

reconstructed using the robot generalized momentum. The residual signal grows exponentially

with a contact and the actual magnitude of the contact force is not provided. The original

residual solution solves the first two phases of contact detection and localization of the link

in which the contact happens. Different extensions of the residual have been extended to

obtain the value of the contact force. Using external sensors like a Kinect [84] or relaying

heavily on the robot model coupled with a particle filter [87]. The original residual approach

assumes the robot is able to reach a commanded torque value. Some other solutions have been

proposed to circumvent this limitation and still use the residual concept. Others have exploited

current sensors and known quasi-static robot configuration to estimate the joint torques in the

unloaded case and through comparison with the loaded case reconstruct the forces [89]. An

extension of the residual method estimates the joint torques with current measurements taking

into consideration backlash and friction [40]. Although the joint torques are estimated, their

value are only used as threshold to detect contacts. A non-linear model based on binary-tree

prediction has been used when the model of the motor is not trusted using discrepancies in

the commanded position [17, 18]. In the last mentioned solution the magnitude of force was

not reconstructed. The residual method has some limitations such as the need for enough DoF
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for a full contact reconstruction (three forces and three torques) and the inability of detecting

contacts in the nullspace of the Jacobian. This information is not lost when using six axis

FT sensors. Even so, they are theoretically able to distinguish multiple contacts in the same

kinematic chain which six axis FT can not do alone.

A strategy to estimate contact wrenches given whole-body distributed FT and tactile sensors

was proposed in [30] and extended in [129, 29]. The estimation strategy relies on the joint

torque estimations described by [44]. As a by-product of the rearranged Newton-Euler

recursion, authors present an algorithm to compute the total (external) contact force acting on a

subpart. Subparts are defined by the kinematic subchains obtained by dividing the robot at the

level of the available FT sensors. An exact estimation can be given only if there is one contact

wrench per subchain. Otherwise, a linear least-squares is proposed to obtain an approximated

solution. The contact force is estimated at any subchain even if the contact is far from the FT

sensor. Therefore is not strictly measured. This relies heavily in the accuracy of the FT sensors

and is susceptible to errors in the model, encoders and IMU measurements used to propagate

gravity values. Similarly, the orientation and the velocity of the floating base have been used

in a state estimator able to rebuild, in a single state vector, floating base kinematics, contact

forces, and external contacts. The state estimator is based on extended Kalman filtering [13].

No force-torque data is used, but the possibility to improve the performance of the estimator

with this data is clearly mentioned.

A method for estimating the contact forces using a body-suit of motion capture system was

proposed in [105]. A recursive neural network is used to learn the forces based on physics-based

optimization. Even if the estimation depends on centroidal dynamics, the collected data set is

collected through human motions and are not likely to be equally performed by floating base

robots. Contact detection is still required.

A way to make the estimation of localization of contact more robust has been to perform

sensor fusion through the combination of hypothesis using a likelihood probabilistic estima-

tion [38]. Each sensor involved and the model provide a different hypothesis with its respective

likelihood in a discretized 3D cartesian space. Multiple contacts can be detected, but no value

of the force is provided. Another way to fuse data is through the use of the extended kalman

filter [33]. In this case, a restriction to the use of flat tactile array prevents from estimating

other contact forces beside the one at the foot.

In general, these solutions can be grouped in using tactile sensing as a substitute, using joint

torque information, propagating FT sensor measurements using the model or fusing multiple

type of sensors. Even among these there is no solution that can detect multiple contacts in every

situation in a fast for the possible range of forces.
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2.3.2 Joint Torque Estimation

There are many robots that do not include joint torque sensors [91, 17, 89]. Adding series

Elastic Actuators (SEA) [103] is a common solution to estimate joint torques. Often, this

solution adds a degree of compliance into the robot, which makes the control and planning

tasks more complex. Based on the same elastic principle, joint torque estimation can also be

achieved by measuring the deformation in the Harmonic Drive to estimate Joint torques [152].

Using any of these techniques for joint torque estimation requires mechanical changes, which

may sometimes be not feasible. Another possible solution is to use current measurements and

the motor model to estimate the motor torque. The whole model with the gearbox should be

taken into account to provide the joint torque [149].

There are techniques that combine the distributed FT to estimate joint torques [44, 29,

30, 129]. The resulting accuracy of the joint torque value depends on the performance of the

FT sensor. Some extensions of the momentum-based residual signal method have required to

provide some estimate of the joint torques [40, 89, 17, 18]. Even if control actions have been

successfully executed with these estimations, accuracy comparisons are not provided.

2.4 A multi-body estimation scheme for contact forces and

joint torques

What follows is a description of the theoretical framework proposed in [44, 30] for the esti-

mation of contact force and joint torques on chains, later extended for the whole-body case

in [129]. The algorithm consists in cutting the floating-base tree at the level of the (embedded)

FT sensors obtaining multiple sub-trees that we call sub-models. The base of a sub-model is the

link in the sub-model connected to the FT sensor closer to the floating-base. Each sub-model is

considered an independent articulated floating-base structure governed by the Newton-Euler

dynamic equations [129]. In the example in Fig. 2.4, measured force-torques are indicated

in green and are pointing towards the floating-base, while unknown contact force-torques are

drawn in red. There are n = 5 FT sensor in the system, that is then decomposed in n+1 = 6

sub-models. Other contact force-torques (red arrows in Fig. 2.4 and Fig. 2.5) are estimated

with the procedure described below.

This algorithm is used as an evaluation tool in Chapter 4, to calculate the reference wrenches in

Chapter 5 and extended in Chapter 7 to consider information from the artificial skin.
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2.4.1 Notation
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Notation used through the thesis

A,B Coordinate frames.

∥·∥ Euclidean norm.

A Inertial frame.
ARB ∈ R3×3 3D rotation matrix from B to A
AoB ∈ R3 Coordinates of the origin of frame B expressed in

frame A.

u,v ∈ R3,u∧ ∈ R3×3 Skew-symmetric matrix-valued operator associated

with the cross product in R3, such that u∧v = u× v.
AωA,B with Aω∧

A,B = AṘB
AR⊤

B Angular velocity of frame B

with respect to the frame A expressed in frame A.

Bf =
[

B f
Bτ

]

Coordinates of the 6D force f expressed in the B frame.

AXB =
[
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Ao∧B

ARB
ARB

]

6D force transformation from B to A.

⟨s, p⟩ Dot product between vectors s and p.
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Fig. 2.4 A multi-body system with internal six-axis FT sensors.

2.4.2 Contact Force Estimation

In the simple case of one body, we define the sensor proper acceleration of body B of the frame

B w.r.t. to the frame A as Bα
g
A,B =

[

BRA(
A ÈoB−g)

Bω̇A,B

]

, where Ag is the gravitational acceleration in

the inertial frame [129].

We also define the inertia tensor of body B expressed with respect to frame B as BMB =
[

m13×3 mBc∧

−mBc∧ BIB

]

, where m is the body mass, Bc are the coordinates of the center of mass in frame

B and BIB is the 3D inertia matrix of the rigid body, expressed with the orientation of frame B

and with respect to the frame B origin.



32 Use of force-torque sensing in Robotics

Fig. 2.5 Graphical representation of equation (2.2).

Using the sensor proper acceleration of body B (Bα
g
A,B) , the angular velocity of the link B

in the B frame (BωA,B), FT sensor measurements (Bfs) at a given instant and the inertia tensor

of body B (BMB), we can estimate the contact force-torque Bfx by writing the Newton-Euler

equations for body B:

Bfx = BMB
Bα

g
A,B +

[

Bω∧
A,B 03×3

03×3
Bω∧

A,B

]

BMB

[

03×1

BωA,B

]

− Bfs. (2.2)

In (2.2) the term Bfs is the only one that does not depends on acceleration, velocity and the

inertial parameters of the body. For convenience, we will indicate all other terms as:

BφB(
Bα

g
A,B,

B ωA,B)=BMB
Bα

g
A,B

+

[

Bω∧
A,B 03×3

03×3
Bω∧

A,B

]

BMB

[

03×1

BωA,B

]

. (2.3)

From here on, we will omit the dependency on the proper sensor acceleration and on the

body angular velocity indicating this term as BφB and call it net force-torque acting on the body

B even if this term does not include the force-torque due to gravity.

A multi-body system is composed of two sets. A set L of nL rigid bodies (links) intercon-

nected by nJ mechanisms (joints) constraining the relative motion of a pair of links. J is the set

of joints, represented as the two links interconnected by the joint. Each body B is associated

with a frame B rigidly attached to it.

When considering the case of a multi-body system, for each link in a sub-model L ∈ Lsm

we indicate with ism(L) the set of links that are connected with L in the floating-base tree, but
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belong to a different sub-model., i.e.:

ism(L) := {D ∈ L | {L,D} ∈ J∧D /∈ Lsm}. (2.4)

For the multi-body case, we express the net force-torque of a submodel as:

∑
L∈Lsm

BXL
LφL = ∑

L∈(C∩Lsm)

BXL
Lfx

L

+ ∑
L∈Lsm

∑
D∈ism(L)

BXD
DfD,L, (2.5)

where Lfx
L is the contact force-torque of link L expressed in link L frame, DfD,L is the force-

torque that link D exerts on link L as seen by the FT sensor in between both links and C⊆ L

is the subset of the links where contact force-torques are acting . Noting that in (2.2) and in

(2.5) the only unknowns are the contact force-torques, the estimation problem may be solved

rewriting these equations in the matrix form Cx = b, where x = ∑L∈(C∩Lsm) Lfx
L ∈ Ru contains

all the u contact unknowns, whereas C ∈ R6×u and b ∈ R6 are completely determined.

The estimation scheme takes into consideration the following three types of possible

contacts:

• pure force-torque : Lfx ∈R6, unknown vector corresponding to force and torque expressed

in the link frame of contact L.

• pure force : f x ∈ R3, unknown vector corresponding to a pure force and no torque.

• force norm : ∥ f x∥ ∈R1, unknown assuming the pure force to be orthogonal to the contact

surface.

The matrix C is built by adding columns for each contact according to its type. The columns

associated to pure force-torques (Cw), pure forces (C f ) and pure force norm (Cn) are the

following:

Cw =
[

BXL
]

,

C f =

[

BRL

03×3

]

,

Cn =
[

BXL
]

[

ûx

03×1

]

.
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where B is a common frame, in this case the base of the sub-model was selected, and ûx is the

unit normal vector of the contact force-torque. The matrix C mainly depends on the contact

location sensed by the skin. The 6 dimensional vector b is defined from (2.5) in the following

way:

b = ∑
L∈Lsm

BXL
LφL − ∑

L∈Lsm

∑
D∈ism(L)

BXD
DfD,L. (2.6)

The vector b depends on kinematic quantities derived from whole-body distributed gyros,

accelerometers, encoders and the FT sensors [44]. Once C and b have been computed, we can

solve the equation Cx = b for estimating contact force-torques.

When only a single contact acts on the sub-model, there are six unknowns for a system of

six equations, therefore, the associated force-torque has a unique solution. Whenever two or

more contacts are detected, the system admits infinite solutions and it is impossible to get a

reliable estimate of the contact wrenches without imposing some constraints to the system. The

adopted solution consists in computing the minimum norm x∗ that minimizes the square error

residual:

x∗ =C²b

where C² is the Moore-Penrose pseudo-inverse of C [30]. The above solution distributes equally

the total contact force-torque among all contacts.

2.4.3 Joint Torque Estimation

Once an estimate of contact forces are obtained with the method described in subsection 2.4.2,

internal force-torques can also be estimated with a standard Recursive Newton-Euler Algorithm

(RNEA). The torque τ{E,F} of the joint connecting link E and F comes from the projection of

the joint force-torque on the joint motion subspace [129] :

τ{E,F} =
〈

FsE,F ,F fE,F

〉

=
〈

EsF,E ,EfF,E

〉

, (2.7)

F fE,F =−EfF,E , (2.8a)

F fE,F = ∑
L∈γE(F)

FXL (LφL + Lfx
L) , (2.8b)

EfF,E = ∑
L∈γF (E)

EXL (LφL +L fx
L) , (2.8c)
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where γE(F) is the set of the links belonging to the sub-model starting at link F , given E as a

base link, EsF,E is the mapping between the relative 6D velocity of the two bodies connected

by the joint and the joint velocity known as joint motion subspace vector [37, 129].

2.5 Robots dynamic performance

While is true that some robots are now able to walk, jump, run and even parkour. These

behaviors are still not achieved in a consistent reliable way. The most known example is the

robot Atlas’ videos released by Boston Dynamics, Fig. 2.7. As stated by Boston Dynamics’

CEO Marc Raibert, "In our videos, we typically show the very best behavior. It’s not the

average behavior or the typical behavior. And we think of it as an aspirational target for what

the robots do.º These type of dynamic behaviors establish different rapidly changing contacts

with the environment generating impacts making relevant the dynamics response of the sensor.

A situation where is useful to have force-torque sensing is when a contact is established, also

called collisions. Fix based robots are able to achieve dynamic behaviors such as handle

unexpected collisions to some extent [81] and even cooperate with humans [117]. They achieve

this by exploiting force-torque sensing to estimate contact forces and measure or estimate

joint torques. Multiple schemes for handling collisions are presented in a survey on robot

collisions [51]. The initial problems to be solved in this schemes is the detection of contacts,

followed by the location of contacts and the identification of contacts. This can be rephrased as

realize a contact happened, understand where it happened and measure the force of the contact.

Nonetheless, these schemes are only suitable for robots with their base fixed to the ground.

For floating base systems is possible to obtain and use collision related information using FT

sensors, joint torque sensors in addition to encoders, and gyroscopes [137]. In this scheme, an

improvement in the force-torque sensing will directly create an increase in the performance of

the scheme. There are some robots with only one kind of force sensor like the iCub, described

in Section A.1, or with none like Pepper [17]. As a result, this scheme can not be applied

directly to these robots.
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Fig. 2.6 DARPA Challenge 2015 failures.
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Despite the amount of theoretical background to exploit force-torque sensing, floating base

robots in real scenarios still struggle with handling interactions with the environment or other

bodies. A good example is the results from the DARPA Robotics Challenge Finals in June

2015 [10, 27, 60, 26].

During the challenge, most of the teams could not take full advantage of having FT sensors. The

reason why no other extra objects where used for support or stabilization is mentioned to be the

the bad quality of the wrist FT measurements [10]. The Boston Dynamics ATLAS’ FT sensor

measurements were only used as binary contact sensors by the IHMC and MIT teams [27]. It

was mentioned that having more FT sensing information in the form of full six axis FT sensors

at the ankle would have allowed to improve results [26]. Examples of failed attempts are shown

in Fig. 2.6. Different type of failures can be seen. Being unable to understand if the robot has

made contact with the environment (being the ground or a handle). Discerning if the contact is

stable enough to shift the weight of the robot to the contact. Problems arising from unexpected

contacts can easily happen in reduced spaces. Although there are many reasons for the different

failures, the situations previously described are examples of situations in which accurate FT

sensing information can provide crucial knowledge to increase the probability of successfully

perform the tasks.
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Fig. 2.7 Boston Dynamics’ Atlas doing parkour.

The fact that force-torque sensors are affected by mounting issues [130, 8] or temperature

drift [54, 127, 113], reduces the reliability of these sensors and as a consequence the perfor-

mance and repeatability of dynamic behaviors in robots. Poor performance of six axis FT

sensors have been reported in the literature. Unkown errors in the measured magnitude [13, 52].

Lower performance than other FT solutions like force plates has been mentioned [105].

An example of errors due to bad FT measurements can be seen in Fig. 2.8. The full video

can be seen using the QR code or clicking in this link . In this experiment, the contact forces

are estimate using the information from six axis FT sensors and the algorithm described in

Section 2.4. It can be seen that even if the algorithm is able to detect contact forces while the
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robot is not moving. When the robot starts moving contact forces that do not exist appear. Upon

inspection it was revealed that the measurements of the FT sensors were not very accurate.

Given the performance of six axis FT sensors attempts to improve the measurements. Some

rely on redundant sensors [133]. Others rely on reconstructing the ground reaction force

through kinematics and IMU measurements. Then use this information to create a Virtual

Force Sensor that is constantly compared with FT measurements to detect and recover faulty

measurements [52].

(a) Algorithm correctly detecting contact forces.

(b) Algorithm incorrectly detecting contact forces.

(c) QR code for full

video.

Fig. 2.8 Contact Force Estimation using algorithm in Section 2.4.

A common strategy in FT sensors to reduce the effect of drift is to remove the bias just

before a change in the load is expected. Robots that have their base fixed to the ground can
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benefit from this method to some extent. Instead in floating base robots, this is not practical.

Most of the time the sensors themselves are used to detect unexpected contacts so the time of

collision is not known a priori. Besides, the main function of the sensors is to measure the

actual force applied or received by the robot. In a scenario in which the robot is already in

contact with a surface, removing the bias will make the value of the measured FT incorrect.

From the literature, it can be seen that six axis FT sensors are in more need of improvement

than joint torque sensors. It is worth to notice that contact joint torques can be completely

reconstructed from the knowledge of the contact forces and the robot model. On the other hand,

there are some contact forces that might not be observable when estimating them through the

joint torques. As a result, a very promising solution is to increase the performance of force-

torque sensors already mounted in the robots while allowing them to cope with sources of drift

such as temperature. Typically, in fixed based robots they were used in slow and short motions

in industrial applications. Fixed based robots have less chances of encountering changing

environments. When used in floating base robots, these sensors might be subjected to a very

wide range of motions be it slow and short or fast and wide. They might also experience impacts

and inertia constantly changing with the robot configuration. Potentially floating base robots

can be used outdoors and be deployed to disaster areas. This means that the environmental

conditions might be really different from the fixed base robots. All this should be taken into

account when seeking to improve a sensor performance.

Even if the principles of force-torque sensors are well known, there are many things that can

become uncertain during the manufacturing process. This complicates the direct use of the

theory to derive the relationship between the input of the sensor and the desired output from a

sensor. It is possible to obtain force-torque information in more indirect ways by profiting from

the relationship forces and torques have with other physical quantities. An example would

be the estimation of a motor torque through the current and the model of the motor. Another

example is the estimation of forces due to the movement of a body by knowing its mass and

acceleration. In fact, these relationships can be exploited to adjust the performance of a sensor

by estimating the relationship between the stimuli and the digital output of the sensor. This

is what the calibration is for. Chapter 3 explains what calibration is and how is done. It also

covers some state of the art in the calibration of FT sensors and tactile arrays.
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Calibration Procedures

Understanding how FT sensors are placed in robots and a general idea of the uses they have

in these robots allows to shape the requirements of the performance of the sensor. A sensor

converts a stimuli to an electrical signal. The knowledge of the working principles of the sensor

may allow to calculate the how the stimuli is converted to the output signal. It is possible that

the stimuli have no direct relationship to the electrical signal and intermediate steps are needed.

Nonetheless, from the perspective of the user, the sensor should receive the selected stimuli and

give a corresponding measurement. Even in cases where the working principle of the sensor is

known, reality might differ due to manufacturing or environmental factors. Furthermore the

calibration should consider the expected use of the sensor to provide more accurate measure-

ments. In this Chapter, the way to allow a sensor to provide accurate measurements despite

these factors is addressed.

3.1 Mathematical Modeling of a Sensor

There is a theoretical input-output (stimulus-response) relationship for every sensor. If a sensor

is ideally designed and fabricated with ideal materials by ideal workers working in an ideal

environment using ideal tools, the output of such a sensor would always represent the true value

of the stimulus. This input-output relationship is called transfer function. In control theory,

the transfer function H(s) is often expressed as the ratio between the input function X(s) and

the output function Y (s), H(s) = Y (s)
X(s) . Nonetheless, for the discussion that follows regarding

sensor calibration it is enough to use a general formulation in the form of:

E = h(s), (3.1)
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where s is the stimulus, h(s) is the transfer function and E is the electrical response.

Ideally, the transfer function can be based on a physical or chemical law that forms a basis

for the sensor’s operation. It is possible that more than one law is required to map all the

working principles of the sensor. If such a law can be expressed in the form of a mathematical

formula, often it can be used for calculating the sensor’s inverse transfer function by inverting

the formula (s = h−1(E)).

In reality, a sensor does not perfectly comply with the mathematical formula of the phenom-

ena it is based on. Too many ideal conditions are required for this to happen. Besides, readily

solvable formulas for many transfer functions, especially for complex sensors, does not exist

and one has to resort to various approximations of the direct and inverse transfer functions.

Common approximation functions are [43]:

• Simple Models

• Linear Regression

• Polynomial Approximations

• Linear Piece-wise Approximation

• Spline Interpolation

• Neural Networks

The relationship between the change of the phenomena to an electrical value for a specific

sensor is obtained through a process called calibration. The objective of the calibration process

is to obtain the parameters of the chosen approximation function for the specific sensor. These

parameters are referred to as calibration values or calibration parameters.

The accuracy of the sensor is then a result of the calibration process. It requires the mathemat-

ical model of the phenomena (or a good approximation) and known stimuli paired with the

corresponding sensor’s response.

A pair of known stimuli with the sensor response is called a calibration point. A set of calibra-

tion points is a calibration data set. The stimuli and sensor response are also called reference

data and raw measurement respectively.

3.1.1 Functions Based in Simple Models

It is desirable that a transfer function has a small number of parameters that require estimation.

This is the reason why using simple models is convenient. Of course, the choice of the model

depends on how good they fit the response of a particular sensor.
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Linear Function

The simplest possible transfer function is linear. The math model can be expressed as :

E =Cs+O, (3.2)

where O is the value of E at s = 0, typically called offset or bias; C is the slope of the line,

sometimes referred to as sensitivity. The graphical representation can be seen in Fig. 3.1. Eq.

(3.2) assumes the possibility of evaluating the sensor at s = 0 value. This might not be possible

in all cases (think of a temperature sensor in Kelvin scale ). For such cases it can be shifted to a

known stimulus s0 using the following equation:

E = E0 +C(s− s0), (3.3)

where E0 is the known response at s0. For this linear model, the inverse transfer function

h−1(E) has the following form:

s =
E −E0

C
+ s0 (3.4)
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Fig. 3.1 Graphical representation of linear model.

Non linear Functions

A nonlinear transfer function can be approximated by a nonlinear mathematical function. The

three main functions based in nonlinear models are the logarithmic, exponential and power
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Function h(s) h−1(E)

logarithmic C ln+Os e
E−O

C

exponential Oeks 1
k

ln E
O

power Csk +O k

√

E−O
C

Table 3.1 Simple nonlinear transfer functions.

functions. Their mathematical equations and inverse transfer functions can be seen in Table 3.1.

Its corresponding graphical interpretations can be found in Fig. 3.2

(a) Logarithmic function. (b) Exponential function.
(c) Power function.

Fig. 3.2 Graphical represenation of nonlinear transfer functions.

3.1.2 Linear Regression

As the name implies it attempts to find the transfer function using assuming a linear model. It

is to be distinguished from the linear model in the fact that this is not a deterministic approach

but a statistical approach. This means that it will attempt to find the best linear function that

fits the data, even if not all calibration points are on the found line. An example can be seen in

Fig. 3.3. The use of linear regression helps to cope with random errors that may appear in the

calibration process.

The typical method for performing linear regression comes from the least squares algorithm.

The formulation of the least squares problem is:

arg min.
C

1

N

N

∑
i=1

∥si −CEi∥
2

(3.5)

The solution to this problem is straightforward and well known in statistical literature. It

minimizes the sum of squared residuals. The calibration parameters are the solution to the least
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square problem and have the following form [75]:

C = (ET E)−1ET s. (3.6)

Least square can be extended for solving for multiple variables. Multiple regression is an

extension of simple linear regression. It is used when we want to predict the value of a variable

based on the value of two or more other variables. Each variable can be considered as a different

sensor. There are other extensions to the least squares formulation for nonlinear cases, but

those are beyond the scope of the current thesis.

Fig. 3.3 Graphical representation of linear regression.

3.1.3 Polynomial Approximations

Any continuous function, regardless of its shape, can be approximated by a power series, this

is also called polynomial approximation. A polynomial approximation function takes the

following shape:

E = D0 +D1s+D2s2 + . . .Dnsn, (3.7)

where Di are the coefficients corresponding to the n-th power or polynomial degree. These

parameters allow to shape the curves to obtain h(s). For polynomial approximations is more

complex to find h−1(E) starting from h(s). For this reason is common to directly estimate the

coefficients of h−1(E):

s =C0 +C1E +C2E2 + . . .CnEn, (3.8)
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where Ci are the calibration parameters corresponding to the n-th power.

An example can be seen in Fig. 3.4. It can be observed that in this case increasing the degree of

the polynomial increases the fitting of the data. This depends on the underlying behavior of

the system. It is quite common that a real system suffers from noise. In the presence of noise,

increasing the polynomial degree risks over-fitting the data, preventing from getting a good

generalized approximation function.

A way to solve the polynomial fitting problem is to use multiple regression. Where the other

variables are generated by elevating the sensor response up to a n-th degree. Least squares can

be used since h−1(E) is linear in terms of the calibration parameters.

Fig. 3.4 Graphical representation of polynomial approximation using different powers.

3.1.4 Linear Piece-wise Approximation

The idea behind it is to break up a nonlinear transfer function of any shape into sections

and consider each such section being linear. Curved segments between the sample points

demarcating the sections are replaced with straight line segments, thus greatly simplifying the

behavior of the function between the points. This can also be seen as a polygonal approximation

of the original nonlinear function. An example is shown in Fig. 3.5.
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Fig. 3.5 Graphical representation of piece-wise linear approximation.

3.1.5 Spline Interpolation

Approximations by higher order polynomials (third order and higher) have some disadvantages;

the selected points at one side of the curve make a strong influence on the remote parts of the

curve. This deficiency is resolved by the spline method of approximation. In a similar way

to the linear piece-wise interpolation, the spline method uses different third-order polynomial

interpolations between the selected experimental points. The graphical representation can be

found in Fig. 3.6.

3.1.6 Neural Networks

An artificial neural network, or just neural network, is a mathematical model which models

itself after the human brain. Similar to the brain’s neurons, it has unit blocks also called neurons

or perceptrons. This is normally the most complex approximation function because one or

more parameters for each neuron has to be estimated (or learned). Nonetheless, it has the

potential to approximate any continuous function. The network learns an input-output mapping

(transfer function) with a method called supervised learning. A single neuron is mathematically

represented as:

y = φ

(

N

∑
i=1

wixi +b)

)

, (3.9)
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Fig. 3.6 Graphical representation of spline interpolation.

where xi are the inputs to the neuron, wi are the weights of each input, b is the bias, φ is the

activation function and y is the output of the neuron. Each input weight and the bias needs to

be learned. A graphical representation of neuron can be seen in Fig. 3.7a

In the mathematical theory of artificial neural networks, the universal approximation

theorem states [24] that a feed-forward network with a single hidden layer (Fig.3.7b) containing

a finite number of neurons with arbitrary activation function are universal approximators.

(a) Graphical representation of a neuron. (b) Feed-forward network with

a single hidden layer.

Fig. 3.7 Graphical represenation of a neural network.
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Neural networks have the potential to approximate any continuous function, but the physical

meaning of the solution is usually lost. Neural networks have become a standard tool to tackle

problems where we want to make preditions without following a particular algorithm or

imposing structure on the available data. Most work to date has focused on the efficiency

or quality of predictions of neural networks, without an understanding how they solve the

problem [58]. They are often applied as a black box, which from a results point of view, has no

contradiction with the aim of calibrating a sensor. Neural Networks is an active research field

in its own. Providing deeper knowledge of the topic goes beyond the scope of the thesis.

Independently from the mathematical model, calibration procedures can be classified de-

pending on the place the calibration data set is acquired. If the calibration data set is acquired

in the system (or structure) in which is meant to be used, it is referred to as in situ calibration.

Instead, if the sensor is calibrated in a structure then removed and mounted somewhere else for

its use, it is refferred to as ex situ calibration.

3.2 Factors that affect sensor accuracy

Accuracy is defined as the maximum difference between the actual value and the sensor’s

output. Given a sensor design, substantial reductions in the measurement error, can be achieved

only by using more sophisticated technologies, materials and components in the construction

of the sensor, and finer models of the structure, or more accurate instrumentation for strain

measurement and calibration. An improvement of these factors with respect to present sensors

is therefore achievable by increasing their cost. However, there are absolute upper bounds to

possible reduction of source errors set by present technological state-of-art, and by inherent

measurement accuracy limitations.

The right approximation function can be chosen from knowledge of the working principles,

but this alone does not ensure the accuracy of the sensor. During calibration, data from

the sensor response is mapped to match the reference stimuli. The accurate knowledge of

the reference data value coupled with the right approximation function warrants the future

performance of the sensor. A factor that needs to be taken into account when calibrating is

the expected use of the sensor this may define the range values of the reference stimuli. Other

factors include errors during the acquisition of the calibration data. Lastly, conditions during

calibration may be different than the conditions in which the sensor is actually used, this may

have unforeseen or undesirable effects on the sensor. An ideal calibration procedure should

take all these factors into account.
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3.2.1 Full Scale and Resolution

All elements in the sensing module provide their own limitations. The sensing element has

many design choices. Some of which include the possible range of the sensor based on the

elastic limits of the material, the displacement response to a force which can help determine

the stiffness of the resulting sensor and its sensitivity.

On the other hand, the combination of the amplification stage in the signal conditioning and

the ADC number of possible conversion values place another set of limitations on the sensing

module in terms of full-scale and resolution. Full-scale for an analog output is the algebraic

difference between the electrical output signals measured with maximum input stimulus and

the lowest input stimulus applied. For a digital output, it is the maximum digital count the ADC

can resolve for the absolute maximum input [43]. The resolution defines the smallest voltage

change that can be measured by the ADC. The number of possible conversion values depends

on the number of bits in the output of the ADC called bitsize. These elements can be considered

as the most limiting factors of the sensor since they are typically selected to be equal or under

the limits of the sensing element.

The amplification stage can be characterized by a gain value ga which is the amplifying factor of

the signal. The full-scale is then the difference between the stimuli that generate the maximum

voltage value smax and the stimuli that generate the minimum voltage value smin using a selected

gain ga for a given sensing element Senselement . Reaching the maximum or minimum value is

called saturation. The full-scale FS can be expressed as:

smax = h−1(E
re f
max|ga,Senselement) (3.10)

smin = h−1(E
re f
min|ga,Senselement) (3.11)

FS = smax − smin (3.12)

where E
re f
max is the maximum voltage value in V, E

re f
min is the minimum voltage value in V. The

full-scale is given in the units of the phenomena that is measured. The resolution of the ADC is

the same as the smallest step size and can be calculated by dividing the reference voltage by the

bitsize. Since the reference voltage determines the full-scale of a sensor, the sensor resolution is

then:

res = FS/bitsize (3.13)

The difference between the smallest and largest physical inputs that can reliably be measured

by an instrument determines the dynamic range of the device [141]. For a digital output is

determined by the value at saturation and the resolution of the sensor. A change in the stimuli

under the resolution value of the sensor will not be measured correctly. Therefore, the resolution
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affects also the accuracy of a sensor. The resolution can be improved by either reducing the

full-scale or augmenting the bitsize. So the accuracy of the sensor can be improved by modifying

Senselement , ga or bitsize. The value of ga can be made variable without requiring major changes

in the sensor even if it implies reducing the full-scale. Any change in the dynamic range of a

sensor modifies the transfer function and requires a new calibration of the sensor.

3.2.2 Notes on acquiring calibration data

Ensuring the data used for calibration can be trusted is fundamental for a good performance of

the sensor. Therefore, it is crucial to reduce the sources of uncertainty in the reference stimuli

during the calibration procedure. Some guidelines for data acquisition are proposed based on

the acquired experience. Although errors might still exist during a careful calibration procedure,

the following guidelines can help reduce uncertainty:

• The data of the reference stimuli should be of equal or better accuracy than the intended

accuracy of the sensor.

• The procedure should take place in a controlled environment.

• The least amount of human intervention helps reducing variability.

• Avoid any interference of external factors during data acquisition.

When something goes wrong during the calibration procedure is usually the case that the whole

procedure has to be repeated adding time to a typically time-consuming task. Therefore making

the procedure easily repeatable tends to be a desirable feature. Having a way to understand

if the acquired calibration data set is useful or not might prevent from performing erroneous

calibration. This increases calibration efficiency.

3.3 Calibration of Six Axis Force-Torque Sensors

A force sensor does not measure the force directly. Measuring a force is the result of converting

other physical phenomena that varies in response to force into an electrical signal. The rela-

tionship between the change of the phenomena to an actual force value is obtained through the

calibration procedure.

The most common phenomena used in force-torque sensors is the change in resistance of silicon

due to strain. In more technical words, the piezoresistive response to strain of semiconductor

material. This material also changes resistance with temperature. Because of this, depending
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on the calibration procedure, the sensor might suffer from temperature drift. Which is the

undesired change of measurement due to changes in temperature.

For sensors based in metallic foil or silicon strain gauge, the sensor is designed such that the

resulting deformation in the structure of the sensors are inside the linear section of the sensing

material for the specified range. Because of this, a linear relationship between deformation and

forces can be assumed. For single-axis force sensor, it is simple to use an array of strain gauges

in a Wheatstone Bridge configuration to perform temperature compensation by itself. Fulfilling

the requirements to achieve the same in a multi-axis FT sensor at hardware level complexifies

the design, increases the number of components needed and the cost.

3.3.1 Mathematical model

There are two physical laws at play in strain gauge force sensors. One is common to all kinds.

It is the relationship between the deformation of a spring and forces, it is the Hooke law of

elasticity, described in more detail in Section1.2.

f = k∆x, (3.14)

where f is the force value in N, k is a constant of the material N
m

and ∆x is the displacement (or

strain) in meter. It is valid as long as the material does not reach plastic deformation. The other

principle depends on the type of sensing technology. For semiconductor strain gauges it is the

piesoresistive effect. As mentioned in Section 1.3.1, the model is the linear function:

R = Ro(1+Sεε), (3.15)

where R is the resistance value in Ω, Sε is the gauge factor of the conductor, Ro is the resistance

with no stress applied in Ω. Combining both physical effects gives the following transfer

function:

R = Ro(1+Sε
f

k
) (3.16)

Therefore the most used model for predicting the force-torque from the raw strain gauges

measurements of the sensor is a linear model. The inverse function is:

f = (R−R0)k
Sε R0

(3.17)

= Rk
Sε R0

− k
Sε

(3.18)

= cR−O, (3.19)
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where

c = k
Sε R0

O = k
Sε
.

Considering possible errors during the calibration procedure linear regression is the most

suitable approximation function. Multi-axis force-torque sensors usually contain multiple strain

gauges, each of them can be seen as a separate sensor. Because of this, multiple regression is

a valid option for this kind of sensors. Therefore each force axis will be calibrated using the

information from all strain gauges,

fi = c1R1 −O1 + c2R2 −O2 + ...cmRm −Om, (3.20)

where fi is the force in the i-th axis in N or Nm depending on the axis, Rm is the digital response

of the m-th strain gauge in bit counts, cm is the slope of the linear model of the m-th strain

gauge in N
bit

and Om is the bias of the m-th strain gauge. The orientation of fi with regards to

the m-th strain gauge will change the value of k required. It depends on the strain being normal,

shear or a combination of both. As a result, the array of cm coefficients Cm and Om will be

different for each i-th axis. Taking this in consideration, the approximation function for these

sensors has the following form:

f =Cr+o (3.21)

where f ∈ R6 are the 6D forces, C ∈ R6×m is the calibration matrix in N
bit

, r ∈ Rm are the raw

measurements (sensor’s response in bit counts) and o ∈R6 is the offset which is also a 6D force

vector. Both the calibration matrix C and the offset o are unknown and need to be estimated.

3.3.2 Calibration procedures

The typical calibration procedure considers first identifying the offset when no load is applied

on the sensor. Then, carefully place some weights in specific positions to have well known

gravitational forces and torques in order to span the space of the sensor. In order to resolve

the coupling effects, is necessary to have calibration points with as many orientations of the

force vector as possible based on the sensor’s coordinate system. In other words, have as

many differnent points as possible in the 3D force space. If the calibration data sets are

obtained when the multi-axis forces and torques are applied to the sensor, the coupling effect

can be solved [95]. The calibration data should ideally be a representative data set of what

the sensor will be subjected to. The methods for obtaining the calibration matrix have been

thoroughly studied and although many methods exist, solving with least squares remains the
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most popular [19].

In standard operating conditions, a decrease in the effectiveness of the calibration may occur in

months. Leading companies for FT sensors [11, 142] recommend to calibrate the sensors at

least once a year. The calibration done by the manufacturer usually implies that the sensor must

be unmounted, sent back to them and then mounted again. The typical callibration procedure is

a quasi-static calibration of the sensor. Dynamic calibration of these kind of sensors has rarely

been investigated due to the complexity involved [78]. Few attempts have been done to model

and compensate for dynamic effects [78, 14, 39, 148]. Usually this calibration procedures

match one of three categories: frequency response, impact response or step response. In general

they highlight the difficulty of a repeatable dynamic calibration procedure and do not consider

complex load cases.

Ex Situ Calibration Procedures

The task of creating equipment to carry out the calibration with high accuracy is equal in

importance to the problem of the design of the FT sensor [151].

For simplifying the time-consuming procedure of careful load placing, some specialized struc-

tures have been designed [134, 140, 16, 126]. Even with the help of these specialized structures,

human intervention is used in every single calibration point since the change of load is manual.

(a) Using specifically designed

structures [126].

(b) Using another sensor [50].
(c) Using robotic arm [96].

Fig. 3.8 Examples of ex situ methods.

Some have used complicated structures for the calibration of the sensor, with a combination

of four joints with two DoF each and four pulleys [151]. This structure uses a complementary

device to change the orientation of the sensor and therefore the application of the load on the

sensor. This allows calibrating with less human intervention. The actual mechanism to change

the orientation of the sensor is not described.
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Others have taken advantage of six DoF robotic arm to span as many orientations of the sensor

as possible with a known mass [95, 96]. Even if the sensor is mounted on a robot, it is strictly

used as a medium to obtain the calibration data sets, not the working destination of the sensor.

In other cases, a previously calibrated sensor is used as reference [36, 94, 3, 50]. This has the

disadvantage of trusting on the calibration of another sensor which might not be accurate.

In Situ Calibration Procedures

FT sensors are prone to change performance once mounted in a mechanical structure such

as a robot [130, 8]. Different methods have been developed to re-calibrate the sensors once

mounted. These in situ methods allow to perform the calibration in the sensor’s final destination,

avoiding the decrease in performance that arises from mounting and removing the sensors from

its working structure. The relevance of calibrating in situ has become evident, making in situ

calibration part of the service provided by FT sensor companies [71].

To the best of our knowledge, the first FT sensor in situ calibration method exploited the

topology of a specific kind of manipulators equipped with joint torque sensors. They assumed

the center of mass of the wrist and the objects grasped are known and aligned with the z-axis of

the sensor. Using three different sets of masses and some predefined positions they estimate

the inverse calibration matrix with least squares. Then an approximate relationship to do the

pseudoinverse is applied. The torque measurements in a specific position are exploited to

complement the calibration points [120]. Another in situ calibration method for FT sensors

can be found in [112]. But, the use of supplementary already-calibrated force-torque/pressure

sensors, impairs this method since those sensors are prone to be affected by the mounting

procedure, propagating the error from sensor to sensor. Some calibrate the sensor mounted

in their final position by designing a calibration bench that accommodates the sensor and the

mounted structure [146]. This requires the design of a particular structure and the mounting

and dismounting of the whole part to calibrate the sensor. Another approach calibrates a FT

sensor in a robot leg. The calibration forces and torques are induced manually by a human

user through the four handles (black cylinders) of the tilt and pan plate mounted on top of

the reference sensor [25]. Even with the novel approach for online calibration, it requires the

cooperation of a human and a reference sensor.

Another method has shown that six axis FT sensor can be calibrated based on the shape from

motion method with a complex algorithm. This requires the use of three different sets of

weights and a minimal setup with a fixed pulley. It requires to calibrate the sensor three times

per load so in total nine calibration data sets [125].

Some methods rely on adding other external sensors, such as accelerometers, to obtain a

ground truth [130]. This translates the source of error to the accuracy of the accelerometers and
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measurement of the transformation matrix between the sensor frames.

In all of these methods, the effect of temperature is either not considered or carefully controlled

when calibrating without accounting for changes in the working conditions.

(a) Pan Tilt mechanism on top of

foot [25].

FT Sensor

FT Sensor

Accelerometer

(b) Using accelerome-

ters [130].

Fig. 3.9 Examples of in situ calibration.

Measurement Accuracy and Resolution

In most of FT sensors, the accuracy is calculated with respect to the full-scale of the sensor.

The resolution of the measurements is conditioned by the ADC converter. By changing the

value of the gains is possible to affect the limit at which the ADC reaches saturation. As a

consequence, the sensor range and resolution are changed. Therefore a higher gain implies

lower range and better resolution. With better resolution the calibration of the sensor can be

more accurate. By having the option of changing the gains is possible to use the same sensor

while optimizing the calibration for a specific range.

3.4 Force Calibration of Tactile Sensor Arrays

Similar to force-torque sensors, in tactile sensor arrays, the Hooke law allows to relate the

displacement to a force. The other physical phenomena depend on the technology used. Since

a calibration considering piesoresistive effect is described in the previous section, in this sec-
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tion the capacitive effect is used. This happens to aligns with the available technology in the lab.

3.4.1 Mathematical model

For tactile sensor arrays, the shape of the capacitor can be assumed to be flat. As mentioned in

Section 1.3.2, for flat capacitors the capacitance Ca in F can be calculated as:

Ca = κε0
A

d
, (3.22)

where κ is the dielectric constant of the material in F
m

, ε0 is a constant if the sensor were found

in vacuum also in F
m

, A is the area of the plates in m2 and d is the distance between the plates

in m.

Considering the Hooke law described in eq. (3.15) and the capacitance for a flat capacitor

described in eq. (3.22), the transfer function is built on the change of capacitance due to the

displacement of the plates when a force is applied as follows:

Ca = κε0
A

d0 +∆d
, (3.23)

where Ca is the capacitance after a displacement and d0 is the original distance in m. Using

eq. (3.15) and knowing there will only be forces induced by compression the final form of the

transfer function is:

Ca =
κε0A

d0 +
− f
k

(3.24)

An example of the behavior of this transfer function can be seen in Fig. 3.10. It behaves like an

negative logarithmic funciton. This way the inverse transfer function is:

f =
κε0Ak

Ca
−d0k, (3.25)

To facilitate the calibration it is possible to use the relationship between the force and the

pressure (p = f
A

) in Pa to generate the stimuli. The inverse transfer function in that case is:

p =
κε0k

Ca
−

d0k

A
, (3.26)

The options for the approximation function are either a negative logarithmic function or

a three to fifth order polynomial. Using polynomial approximation allows having robustness

towards errors during the calibration process. Each individual tactile array requires calibration
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Fig. 3.10 Graphical representation of the transfer function.

and the resulting force can be taken from the sum of calibrated values. This allows to calibrate

the artificial skin to retrieve the force measurements perpendicular to its surface, also called the

normal force.

fn =
N

∑
t=1

ft , (3.27)

where fn is the normal force in N, ft is the force in the t-th tactile sensor in N, N is the number

of tactile sensors in the array. This applies only for flat tactile arrays. Special considerations

have to be made to calibrate curved surfaces.

To evaluate independent contacts an algorithm to group neighbor tactile sensors that have

been activated is required.

3.4.2 Calibration Procedures

Methods covering tactile sensors force calibration can be roughly divided into two categories:

individual sensor calibration and tactile surface calibration [66].

Individual sensor calibration

Some attempts have been made to calibrate the tactile sensors to estimate contact forces. One

of the methods uses a technique that involves applying various forces mechanically on the
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individual tactile sensors with a device that enables to measure the applied forces [100, 86, 68].

Therefore, it is possible to create the mathematical models that relate the applied force and

the sensor values. However, all the methods that use this technique are very time-consuming,

considering there can be hundreds of sensors within a single skin patch and each one of them

has to be calibrated separately.

Multiaxis FT sensors measurements can be used to define a linear regression of the unknown

local stiffness. Transformation matrices between the FT sensor and each tactile element are

able to be calculated in the process [23]. This technique was conducted in a planar array of

tactile sensors manually stimulating each tactile element, disregarding the gaps in between, and

requires the FT sensors to exist on the robots which is not always the case.

Tactile surface calibration

Another technique applies uniformly distributed pressure on the skin to calibrate the skin [66].

The skin is placed inside a vacuum bag and the pressure is decreased inside the bag with a

vacuum pump. The pressure and skin values are extracted during the experiment and the mod-

els, that relate pressure to the sensor reading, are generated for all the sensors simultaneously.

The calibration takes only a few minutes and can be applied to a variety of skin shapes. The

maximum calibration range is equal to the atmospheric pressure.

Based on a similar principle, a device was designed to perform the calibration procedure

fast, accurately and with a very simple setup [65]. The pressure calibration range of this device

is relatively large (3 bars) and can be used with skins of various shapes and sizes.

In all of the previously mentioned calibration techniques, the space between the tactile

elements is neglected.
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(a) Individual sensor calibration [100].
(b) Tactile surface calibration [66].

Fig. 3.11 Examples of artificial skin calibration.

3.5 Conclusions

Given the knowledge of how the senors are built and used, it is possible to realize how important

force torque sensing is for robotics and what should a FT sensor accomplish. It is clear that

there is room for improvement in the accuracy of contact force estimation. Six axis FT sensors

have a long history in fixed base robots and they were sufficiently adapted to the way the

were used, but the conditions and scenarios in floating base robots is very different. Even

so, calibration and performance of commercially available sensors did not seem to adapt to

these new requirements. Although artificial skin is a promising solution for estimation of force

torque in multiple contact scenarios, it has not been fully used as a force torque sensor. The

gap in between sensing elements is disregarded, but it might be possible to improve force

estimation by taking them into account.The knowledge acquired in the field of force torque

sensing generated a series of insights that motivated the research in this thesis.

3.5.1 Motivations

The main motivations of the presented research are:
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• Given the dynamic equation of motion, eq.(2.1), the knowledge about contact forces

and joint torques is fundamental for dynamic motions. Therefore studying how best to

estimate these quantities is an interesting and relevant problem to solve. This information

can be estimated with the aid of force-torque measurements.

• From the use of force-torque sensing in robotics is possible to see that force-torque

sensors have a great potential already depicted theoretically. Therefore further improving

this technology is valuable.

• Robots performance in real scenarios proves that in situations outside controlled en-

vironments the reliability of these sensors impacts greatly the performance of robots,

especially floating base robots. The reliability of these sensors needs to be improved.

• A calibration procedure is fundamental for the reliability of a sensor since is what

determines the performance of a sensor once the design is fixed.

• Knowledge of the working principles of the sensor and expected uses of it should guide

the calibration procedure design.

• Tools to understand the validity of the calibration data can be very helpful in the calibra-

tion process and may also give useful insight in the behavior of the sensors.

• Mounting Force-torque sensors in mechanical structures like robots, affects their per-

formance and besides the need to be calibrated at least once a year. Both issues can be

addressed by in situ calibration procedures.

• The main technology used based on silicon semiconductor suffers from temperature drift.

It should be taken into account in the sensors’ calibration.

• Complex loading cases, drift and noise in the sensor ask for a comprehensive excitation of

the sensor that could potentially consider dynamic modeling. To achieve this consistently

might require a new ex situ calibration procedure.

• Six axis FT sensors, are able to sense the sum of forces and torques acting on a body,

but struggle to independently identify different contacts. Other sources of force-torque

sensing information should be explored.

Given the listed motivations, the objective of this thesis is to provide the knowledge and

algorithms needed to have a reliable and accurate estimation of contact forces and joint torques

exchanged between the robot, the environment and other objects. It focuses on improving

the measurement reliability of the six axis FT sensors. This allowed robots to perform better
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dynamical motions. This was achieved by developing novel in-situ calibration methods and

proposing a new ex situ calibration device. Other sources of force-torque information, such

as tactile arrays, were explored. This should enable the research community to better exploit

force-torque sensing in complex structures such as robots.

3.5.2 Objectives

There are three intermediate goals to achieve the general objective previously described:

1. Deep understanding of force-torque (FT) sensors.

2. Improvement of force-torque sensors’ performance.

3. Increase performance of dynamical motions in robots through the use of force-torque

sensing.

To gain a deep understanding of the force-torque (FT) sensors the following actions were taken:

• Study the functioning principles of the different six axis FT sensing technologies.

• Understand how force-torque sensing is used in robots.

• Revise how force-torque sensing is used in robotics.

• Investigate how six axis FT sensors are usually calibrated.

• Develop tools for evaluating six axis FT sensors data.

• Analyze the performance of six axis FT sensors mounted on robots.

Seeking to improve force-torque sensors’ performance the strategies implemented were:

• Development of in-situ calibration methods.

• Design of an improved ex-situ calibration method.

• Investigate the feasibility of using tactile sensors as force-torque sensors.

Aiming to increase the performance of dynamical motions in robots through the use of force-

torque sensing, it was considered necessary to:

• Allow the articulated body to exploit the improved measurements.
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• Evaluate the result of improving measurement quality.

• Allow the possibility to exploit other sources of force-torque information, such as tactile

sensor arrays.

• Allow the robot to estimate individually forces when more than one force is acting on

the same robot.

3.5.3 Assumptions

The thesis focuses mainly on six axis FT sensors and other possible sources of force-torque

sensing. In regards to exploring six axis FT sensor behaviors on a robot and their in situ

calibration, the research assumes the following:

• The model of the robot is known and considered accurate.

• The location of the sensors is known and the robot allows to excite the sensor in all six

axis.

• The robot is able to be controlled to some extent without force-torque sensor feedback.

• An algorithm to exploit the measurements to estimate contact forces is implemented on

the robot.

• The calibration matrix of the sensor is known. This is not strictly required.

• Ability to actually change the calibration inside the sensor is not required but is useful.

The other sources of force-torque sensing proposed are capacitive tactile sensor arrays. For

these sensors the assumptions are:

• The sensor can be calibrated to measure either pressure or forces.

• The location of each individual taxel with respect to the robot is known or able to be

calculated.





Chapter 4

Six Axis Force-torque Sensor

Performance Evaluation Tools

Understanding the principles behind the sensors is important. But studying the actual behavior

of the sensor mounted on a system can help understand how to more effectively improve

the performance of the sensors. An easy fast way to evaluate calibration data is important

for efficiency when doing sensor calibration. In this Chapter, methods for evaluating the

performance of mounted six axis FT sensors are explained. The tools developed to obtain the

evaluations are described. This is followed by a series of test to gain insights into the behavior

of the sensors and their possible sources of error.

4.1 Performance Evaluation Tools

To analyze a sensor is crucial to be able to distinguish when a sensor is working correctly. To

do this, a way to measure the performance of a sensor such that it allows a comparison between

sensors is needed. To quantify the performance, a commonly used quantity is the Mean Square

Error (MSE). Nonetheless, since the analysis was performed with mounted sensors on a robot

is possible to create specially designed evaluation tools. Three tools for understanding and

evaluating the sensors were designed. These tools were employed to gain insights into the

performance of the available sensors. The tools are :

• Visualization Tool

• Sphere Analysis Tool

• Contact force validation Tool
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4.1.1 Visualization tool

Experimental data can have unexpected behaviors. It is crucial to understand what could be the

cause of the unexpected behavior. The visualization tool is meant to make this process much

more intuitive and fast by providing a connection between the 3D space of either the forces or

torques and the position of the robot at a certain point of an experiment. It uses the logged data

of the experiment. It could be seen as a way to debug an experiment offline.

The visualization tool has two modes: one in which it runs the experiment as an animation

and the other one in which is possible to select a specific sample of the experiment to analyze. It

can receive an optional argument to plot the torques instead of the forces. The first mode allows

also to record a video of the forces or torques. An example can be seen using the QR code in

Fig. 4.1 or following this link. The second mode has some useful features for debugging an

experiment:

• A slider to move along in the experiment.

• A text box in which a number can be entered to move the experiment to that specific

sample.

• A button for saving a relevant sample and time of the experiment.

• A toggle button to select if the saved sample can be considered the beginning or end of

an interesting section of the experiment.

Example of the visualization tool can be sin in Fig. 4.6. For the visualization of the iCub,

the iDyntree [129] visualizer is used.
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Fig. 4.1 Visualization video mode.

4.1.2 Sphere Analysis tool

Consider a body in which the center of mass does not change and is being moved in a spherical

trajectory. When the body is moving slowly, such that acceleration of the body can be neglected,

and no other force is acting on the body the only cause of force is the gravity. In this case, the

magnitude of the force remains the same and what changes is the orientation with respect to

the inertial frame. If we consider all the possible orientations then the gravity direction spans

a unit sphere. This motion generates a sphere in the 3D force space where the radius of the

sphere is mass times gravity (m×g).

The sphere analysis tool uses this as a ground truth. By generating spherical motions with

one of the limbs in which the FT sensor is mounted (an arm or a leg), an ellipsoid is fitted using

the measurements of the sensor.

The radii of the ellipsoid correspond to the magnitude of the force when it is fully applied on

the respective axis. If the sensor was perfect, the same value would be observed for the three

force axis. Thus the difference between the among axes can be considered a value of their

performance. The standard deviation (std) between the radii was selected as a performance

index to represent the performance of a sensor with a single number. A value closer to zero
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represents a better performance.

Furthermore, if the model of the robot can be trusted a reference sphere is generated to calculate

what is the error in N of each force axis of the sensor. This can also be used to improve the

fitting of the ellipsoid with the knowledge that we are expecting a sphere.

Using the sphere analysis tool a comparison can be made between the measurements of the

sensor and the expected value. This is done by looking at how different the ellipsoid is from a

sphere. An example can be seen in Fig. 4.2. It has been shown that this difference is related to

a change in the effectiveness of the calibration and it can be corrected [130]. This difference

can be considered a "deformation" of the calibration since an ellipsoid is considered a stretched

(deformed) sphere.
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Fig. 4.2 Sphere Analysis Tool graphs.

In summary, we do the following:

• With the robot on the pole span a part of a sphere with the leg.

• Read force-torque measurements and kinematic information.

• Calculate the ellipsoid which fits the forces based in the sensor measurements.

• Obtain the radii of the ellipsoid and divide by gravity to obtain mass values.

• Calculate the std value.

If the model of the robot can be trusted then:

• Calculate expected wrenches at the force-torque sensor positions. To generate the

reference sphere.

• Use reference sphere to improve the fitting of the ellipsoid.
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• The center of the fitted ellipsoid is considered the offset and can be easily removed.

• Compare mass values or forces as a measure to know how accurate the measurements

were.

When the model can not be trusted, it is possible that a sensor has a low std value, but its

measurements are not reasonable. For example, if a sensor has a perfect sphere of 70 N radii

when the load applied is something around 50 N. Nonetheless, it might mean that the sensor

itself is less prone to deformation due to mounting. In this case, the results of the tool give us

mainly an insight into the coherence of the sensor with regards to its calibration.

4.1.3 Contact Force Validation

This evaluation tool reproduces offline the behavior of the contact force and joint torque

estimation of the robot described in Section 2.4. It simulates the behavior of a sensor as if it

was being used by the robot and allows to quantify its performance. In the estimation scheme,

the robot is divided into sub-models by cutting the robot in locations where a FT sensor is

found. The contact force validation procedure consists of estimating the contact forces in a

sub-model where no contact or contact force is experienced. The value of the estimated contact

force should be zero. An example of such sub-model in the iCub can be found between the

sensor at the hip and the one at the ankle.

The contact 6D force value is estimated at a given contact point. Then, is brought back to

the sensor frame being analyzed at the moment. By applying :

f s = sX
kf k (4.1)

where sX
k is the transformation matrix from the contact point to the sensor, f k is the 6D force

vector at the contact frame and f s is the 6D force vector at the sensor frame. This way it is

possible to know the contact force measured by an axis of the sensor.

The performance evaluation can be done on the magnitude of the force and in each axis

separately. When we use the evaluation on the magnitude, it allows to evaluate the performance

of a calibration matrix as a whole. Instead when looking at each axis as a separate evaluation,

it is possible to measure a calibration matrix performance of that axis.

The estimation scheme combines the information of the sensors found in the sub-model. At

any given time of the contact forces estimation, just one calibration matrix is being evaluated,

even if the tool itself evaluates more than one sensor and multiple calibration matrices for that

sensor in a single run. It has two modalities based in the source of the information of the other

FT sensors involved in a sub-model. The first mode uses the estimated wrenches using only the
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model for all sensors except the one being evaluated at the moment. The second mode uses the

logged measurements of all sensors except the one being evaluated at the moment.

The first modality allows for a cleaner evaluation of the sensor since we are using ideal

estimation values for the sensors not being evaluated. This modality is restricted to the fact that

the estimation wrenches are only accurate when there is only one contact on the robot. The

second modality is able to evaluate a general performance of the robot as long as the sub-model

in which is being tested has no contact, but it might suffer from the errors in the measurements

of the other sensors. This performance tool was mainly used to select a calibration matrix that

had the best results on improving the performance of the robot.

4.2 Application

4.2.1 Comparison of sensors mounted in the Robot

Using the Sphere Analysis Tool provides an objective way of quantifying the performance of

a sensor. This allows comparison between sensors even when the experiment data is taken at

different times. In here, we enclose just a small representative subset of the sensors that were

evaluated.

Description of sensors used in the comparison

There were mainly three kinds of sensors to compare: the FTsense strain 1, FTsense strain 2

and the ATI mini 45. The characteristics of these sensors are described in A.2.1. The naming

convention for the FTsense is SNXXX, where ’SN’ referrs to ’serial number’, and ’XXX’ is

the actual serial number.

FTsense strain 1 sensors:

• SN138 : mounted on right leg of iCubGenova01

• SN140 : mounted on right leg of iCubDarmstadt01

• SN269 : mounted on right leg of iCubGenova04

• SN233 : mounted on left leg of iCubDarmsdtadt01

• SN1065711 : mounted on left leg of iCubGenova01.

1The SN106571 is a slightly modified version of the strain 1. It has a spine that prevents displacement in the

inner mechanics of the sensor once it is closed. This sensor loses its advantage if it has to be reopened for any

reason.
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FTsense strain 2 sensors:

• SN282insitu : mounted on the right leg of iCubGenova04, using the calibration estimated

in situ 2.

• SN282 : mounted on the right leg of iCubGenova04

• SN234 : mounted on the right leg of iCubGenova02

• SN233 : mounted on the left leg of iCubGenova02

The ATI mini 45 : temporarily mounted on the right leg of iCubGenova04.

For the sensors FTsense strain 2 and the ATI more than one data set was collected. Only

the first and last test are presented.

Test description

In summary, the steps are the following:

• With the robot on the pole run a spherical grid movement on a chosen leg.

• No contact forces should be applied during the grid movement.

• Read and record force-torque measurements and kinematic information.

• Evaluate the degree of deformation of the sensor’s calibration using the sphere analysis

tool.

Results

The performance of the sensor is evaluated with regards to the std value calculated on the three

force axis. From the performance analysis in Table 4.1, it can be concluded that mounting a

sensor in the robot does change its performance. An example can be seen in Fig. 4.3. The

performance of the ATI is less affected by the mounting procedure as it can be seen from

Fig. 4.4. Sensors with a performance index (std) below 0.6 were rare. In comparison to the

average sensor, the in situ calibrated sensor had a std value 4 to 10 times smaller. Thus, the

best performance is from the FTsense strain 2 using the in situ calibration.

The modified version of the FTsense strain 1, did not seem to have any particular advantage,

although the deformation of the calibration in the torque axis was not tested. It can also be

2The in situ calibration method is described in Chapter 5 with no temperature compensation
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observed for the sensors with multiple tests that the sensors are affected by drift as seen in

Table 4.1.

(a) x-y plane no reference (b) y-z plane no reference

(c) x-y plane with reference (d) y-z plane with reference

Fig. 4.3 Example of calibration deformation on sensor SN333.



4.2 Application 73

(a) SN233 (b) SN282 in situ

(c) ATI mini 45

Fig. 4.4 Sensors with best performance from each kind

4.2.2 Using Visualizer for Identification of troublesome joint configura-

tions

After an experiment with the sensor SN282, some unexpected behavior of the forces was

observed as showed in Fig. 4.5 and Fig. 4.6. This was also confirmed with the Sphere Analysis

Tool, by having a std value out of the average when not using the reference as seen in Table 4.1.

By using the visualization tool, it could be observed that reaching the joint configurations

in Table 4.2 created the unexpected behavior. After looking at the posture and retrieving the

joint configurations (using the sample number at which the behavior was observed), it was

possible to replicate the configuration on the robot and verify if the behavior was repeatable.

The reason was found to be that the robot was touching the covers generating an undesired

contact force. This allowed to change the sequence to avoid the issue in the future and avoid
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With Reference No Reference

Sensors Error x Error y Error z Std Std

SN169 5.9484 24.5433 2.6872 1.2019 0.9024

SN140 9.5884 15.1658 1.6366 0.6931 0.7998

SN138 −6.5550 17.4981 2.5578 1.2379 0.5249

SN233 2.2601 11.4800 2.4087 0.5383 0.5225

SN106571 19.1296 15.0756 2.7308 0.8707 1.0892

SN3331 5.8339 17.7120 4.1286 0.7543 1.3778

SN3332 5.6101 18.7182 4.2647 0.8139 1.3158

SN3341 7.5575 19.7817 4.5297 0.8231 1.0713

SN3342 8.5443 19.1929 4.3815 0.7787 1.0669

SN2821 9.1065 26.9490 7.0502 1.1155 2.4238

SN2822 9.0371 25.5854 6.4697 1.0576 2.1551

SN282insitu1
0.4174 1.6623 2.7594 0.1194 0.3896

SN282insitu2
0.8401 1.5680 3.3363 0.1309 0.6307

ATI1 8.0796 15.3603 3.1578 0.6258 0.1828

ATI2 8.2997 14.6807 5.3031 0.4882 0.2400

Table 4.1 Sphere Analysis Tool results.

’r_hip_pitch’ ’r_hip_roll’ ’l_hip_pitch’ ’l_hip_roll’

−28.3995 6.0040 −28.4382 5.9985

−30.0202 72.8011 −30.0202 72.7956

−12.1784 75.4378 −12.2221 75.5202

5.3119 72.6693 5.3119 72.6198

40.8198 74.0757 40.7319 74.0698

58.3101 75.7894 58.3980 75.7839

76.0640 73.2405 76.0640 73.2350

−28.6140 6.0040 −28.7897 5.9985

Table 4.2 Identified joint configurations with unexpected behavior
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using the data of the periods of the experiment were the undesired contact forces were observed.

The data of the experiment with those sections removed is showed in Fig. 4.7.
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Fig. 4.5 Reaching 73o in the hip roll
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Fig. 4.6 Reaching -28.4o in the hip pitch
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Fig. 4.7 Data experiment with sections removed

4.2.3 Mounting tests

A change in the behavior of a sensor has been observed after mounting [130]. In an attempt to

understand the reason for this change, some tests regarding the mounting of the sensor were

designed.

The tests performed were related to the value of the torque used when screwing the sensor into

the robot. The idea is to see if these torque values affect the sensor and if there is a strategy to

minimize the change in behavior. The test steps were defined as:

• In the first iteration, do not change the torque on the screws. In the next iterations

progressively reduce the value of the torques starting from 2 Nm.

• Run a spherical grid movement on a chosen leg and record the data.

• No contact forces should be applied during the grid movement.

• Evaluate the degree of deformation of the sensor’s calibration using the sphere analysis

tool.

• Loose the screws in one leg and repeat the experiments.

• Compare with results obtained from other experiments with different torque values.

Data sets and remarks

Six cases where considered. The cases are: 2 Nm, 1.5 Nm, 1 Nm, 0.5 Nm, 1 Nm on x-axis

screws 2 Nm on the others (mixed1-2 Nm), 2 Nm on the x-axis screws 1 Nm on the others

(mixed2-1 Nm). The screws aligned with the x-axis can be seen in Fig. A.5. In the figure,



4.2 Application 77

x-axis is pointing to the right of the third image.

For most of them 4 datasets were taken on the right leg of the iCub. Using 2 Nm to screw the

sensor seemed to be already at the limit of the screw. Due to some problems with a cable being

crushed under some positions of the robot during the execution of the spherical motions, only

the 2 Nm datasets where done in the left leg before changing to the right leg. Also, one dataset

of the 1 Nm test was incomplete due to issues with the logging application.

At the moment of the tests, the iCub had not been fine-calibrated, so there is no guarantee the

calculated wrenches were correct. Therefore the reference sphere generate was created using

the smallest radii for easier visual inspection.

Results

Best results according to the Sphere Analysis tool, where achieved on the left leg when the

screws were all on 2 Nm shown in Fig. 4.8, followed close by the right leg all screws at 1 Nm.

Both of these sets have a sample with 0.5 as std value which is by far outliers w.r.t the general

obtained values in all other tests. The resulting std values obtained in the experiments are

shown in tables 4.3 and 4.4 . Fig. 4.9 shows the worst performance for comparison.

- Original 2 Nm

First Trial 1.0090 0.5272

Second Trial - 0.7245

Third Trial - 0.8738

Fourth Trial - 0.7123

Average Std - 0.7095

Table 4.3 Table comparing std of the experiments on the left leg.

- Original 1.5 Nm 1 Nm 0.5 Nm mixed1-2 Nm mixed2-1 Nm

first Trial 1.0935 0.8974 0.5778 1.0717 0.7938 1.1639

second Trial - 0.8789 - 1.0893 0.7739 1.0797

third Trial - 0.9156 0.7143 1.0908 0.8774 1.0860

fourth Trial - 0.9620 0.8389 1.1203 0.8972 1.1283

average Std - 0.9135 0.7103 1.0930 0.8356 1.1145

Table 4.4 Table comparing std of the experiments on the right leg.

From the results it could be seen the following observations:
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• The std value when different torques where used to screw was higher than using the same

torque to screw the sensor. Therefore, a unique torque values to screw the sensor to the

robot improves the performance.

• Leaving the screw too loose or having different torque values in the screws generates a

higher std value than the one calculated on the ex situ calibration data. This means these

scnearios decrease the performance of the sensor.

• Leaving the y-axis more loose has higher std value than leaving the y-axis more loose.

So the axis more susceptible to deformation is the y- axis.

• The values that have the best performance are 2 Nm and 1 Nm. This is unexpected since

1 Nm was already below the suggested minimum of the screw which was 1.4 Nm.

• Even having the same value for all screws does not make the performance of the sensors

comparable to the one seen with the ATI or the in situ calibrated sensor in subsection

4.2.1.

In Appendix B are reference images to appreciate the deformations found in the different

experiments. For a common reference, the third trial was taken from each set.
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Fig. 4.8 iCubGenova04 robot sensors ellipsoids, best results
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Fig. 4.9 iCubGenova04 robot sensors ellipsoids, right leg 0.5Nm experiments
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4.2.4 Conclusions

Mounting a sensor on the robot makes less effective the calibration of the sensor. Having the

same value on all screws seems to help avoid having some deformation on the calibration of the

sensor, but it does not solve the problem. There also does not seem to be a correct unique value

for screwing but seems something between 2 Nm and 1 Nm is fine. The important thing is to

have the same torque in all screws. Having the chosen value close to 2 Nm might be preferable.

Depending on the type of screw used it might be possible that 2 Nm is a value to close to the

limit of the screw. This has to be taken into consideration.

It seems important to notice the biggest deformations were in the big majority of cases in the

y-axis.

Multiple tests on the same sensor have shown a degrade in the performance of the sensor.

This is due mainly to drift and affects the measurements. Due to this phenomena it is a common

practice to re-estimate the offset or bias of the sensor before starting an experiment.

The use of a calibration estimated in situ shows a big improvement with respect to the other

sensors.

4.3 Problems Observed in Silicon Based Six Axis Force-torque

Sensors

Given the results and experience working with the sensors, five main issues were identified.

This problems prevent to fully trust the measurements of the FT sensors on the robot.

4.3.1 Calibration change after mounting

FT sensors are prone to change performance once mounted in a mechanical structure such as a

robot [130, 8]. The Tables 4.1, 4.3 and 4.4 corroborate this behavior. This issue has motivated

the creation of in situ methods to re-calibrate the sensor in its final destination. The reason

behind this change has not been fully studied. It could be seen in Section 4.2.3, that the torque

with which the sensor is mounted does affect the measurements, but is not the only cause. Other

sources of this problem could be in the machining of the sensor and the sensor interfaces.

4.3.2 Saturation

Saturation in the sensor arises from the ADC reaching its limit in any of the six channels of

the sensor. The behavior of the sensor, when saturated, is to send a saturation message and

keep streaming the last valid values before saturation. On the iCub this logic is temporarily
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lost in the upper levels where in case of saturation the data is simply not streamed in the ports,

but when using the implementation of the estimation scheme in 2.4 on the robot any not-ok

force-torque measurements, including saturation, are taken care differently.

The behavior is the following:

• If the measurement is not ok, then the previous measurement value is not replaced.

• Therefore the previous value will be reused in the estimation of joint torques and contact

forces.

• The low-level controller receives constant values.

An example of how a saturation looks from the forces and torques perspective can be seen

in Fig.4.10a. The actual saturation is much better appreciated when looking at the raw data

since the actual saturation happens at the channel level. An example of this can be seen in

Fig. 5.8a In the case of the FTsense strain 1, this was a very serious issue creating problems in

the controller. The gain selection feature in the FTsense strain 2 allows to overcome this by

selecting the right gains.
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Fig. 4.10 FT sensor behavior when suffering saturation.

4.3.3 Temperature Drift

The FTsense Strain 2 includes a temperature sensor. This allows to study the effect of tempera-

ture in the measurements. A common solution to compensate temperature effects when using

strain gauges is to use the Wheatstone bridge circuit to compensate for temperature [57]. But

this method is effective to compensate for temperature only if all strain gauges are subjected

to the same temperature change. Given the dimensions and arrangement of the strain gauges
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inside the FTsense, applying this method to compensate for temperature was not feasible when

the sensor was designed. To observe the effect of temperature on the measurements, a heat

gun was used to heat a F/T sensor while measuring the load of a 33 kg robot. The initial load

is removed to show the change in measurements caused by the change of temperature. The

temperature effect is clearly visible on the z-axis, which is the one experiencing most of the

load as shown in Fig. 4.11a. The effect of temperature looks close to a linear behavior. The

temperature also affects the other axes as shown in Fig. 4.11b and Fig. 4.11c. The temperature

seems to affect more the forces than the torques. The observed vibration while heating up was

induced by the air coming from the heat gun. The effect of temperature hysteresis can also be

appreciated in the figures.
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(a) Temperature effect

(b) Temperature effect on Fx an Fy

(c) Temperature effect on Torques

Fig. 4.11 Temperature effect on the FT measurements
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4.3.4 Full Scale calculation

The current full scale information that appears on the FTsense is based on the maximum value

obtained by having saturated values in all channels. This becomes an unrealistic value since the

sensors will stop streaming new values as long as one channel is saturated. Given the observed

behavior of the raw data of the sensors, it is very unlikely that there will be a case where all

channels saturate at the same time as observed in Fig.5.8a. As a result, the limit value specified

by the full scale is much higher than the actual values that can be achieved through the usual

use of the sensor.

4.3.5 Offset variability

While the higher unit resistance and sensitivity of silicon-based gauges are definite advantages,

their greater sensitivity to temperature variations and tendency to drift are disadvantages as

mentioned in Section 1.3.1. This plus the effect of hysteresis may result in a different offset

value for each experiment, but it is assumed the offset remains constant during the experiment

due to the small time frame of each experiment. The effects of drift and hysteresis are currently

not considered in the model. This also means that the offset estimation should be done before

every experiment. It reduces the reliability of the sensors over a longer period of time.

4.4 Conclusions

Even if the decrease in performance due to mounting can be mitigated by using an specified

torque value to screw the sensor, it is considerable. The decrease in performance in repeated

experiments shows the consequences of drift. Temperature drift is not negligible. A way to

minimize its impact is desirable. The saturation problem can be solved by selecting the gains

of the ADC converter based on experimental data. Calibration change, temperature drift and

offset variability can be tackled with a proper in situ calibration. This is addressed in Chapter 5.





Chapter 5

Model Based In Situ Calibration of Six

Axis Force-torque Sensors

In situ calibration methods allow a direct increase in the performance of the sensors. This is

due to the fact that the measurements are improved directly in the application system. Many

of the identified problems of six axis FT sensors can be tackled by calibrating in situ. In this

Chapter, the developed in situ calibration method used on the iCub is described in detail.

5.1 Proposed approach to in situ calibration

Once a sensor is mounted in a complex structure such as a humanoid robot, its calibration

matrix may change due to the internal deformation caused by the mounting screws and other

mounting deformations as described in Section 4.3.1. For this reason, a reasonable option is to

re-calibrate the FT sensor using a set of in situ samples (ri, fi), i = 1 . . .N obtained directly on

the robot.

If it is known that no contact force is acting on the limb on which the FT sensor is mounted,

then the expected force-torque applied on the sensor can be computed using the robot model

and the instantaneous joints position, velocity and acceleration using the method described in

Section 2.4.

In some previous work, a FT sensor was calibrated in situ on the iCub by assuming that a

single rigid body equipped with an accelerometer was attached to the FT sensor [130]. The

inertial parameters (mass, center of mass, 3D inertia tensor) of the attached rigid body were

unknown, nevertheless, it was assumed that a set of additional masses of known mass were

attached to the FT sensor in the various experiments. Even the (limited) assumptions of [130]

complicated the use of the introduced techniques. In particular, the need for knowing a priori
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the accelerometer orientation w.r.t. the FT sensor frame and the assumption that only a rigid

body was attached to the FT sensor, complicated the use of such techniques for performing

joint torques estimation using the FT embedded in the robot structure [44].

To overcome these limitations, the reference force f is estimated using the model of the

robot, which is why the method is named Model Based In Situ Calibration. It is assumed that

the inertial parameters of robot links are known. While this may seem a rather bold assumption,

it is possible if the inertial parameters obtained from the Computer Aided Manufacturing (CAD)

model of the robot are validated by weighting experiments on the individual robot links, as was

the case. The code implementing this method is available at insitu-ft-analysis repository, a QR

code for the code implementation can be found in Fig. 5.1.

Fig. 5.1 Model Based In Situ Calibration code implementation.

Based on the model of the strain gauge described in Section 3.3 and a sensor with ρ raw

measurements, the multiple regression problem for a six axis FT sensor has the following form:

f =Cr+o (5.1)

where f ∈ R6 are the 6D forces, C ∈ R6×ρ is the calibration matrix, r ∈ Rρ are the raw

measurements and o ∈ R6 is the offset. The calibration matrix C and the offset o need to be

estimated.

After working with the sensors and gaining a deep understanding of their behavior, a more

complete problem statement was developed. There are three main elements to this problem

statement. The first element is to formulate the calibration problem in a way such that the

offset is no longer explicitly expressed in the model. This is achieved by either decoupling the

offset estimation problem from the calibration matrix estimation problem or augmenting the

raw space to estimate the offset at the same time the calibration matrix is estimated. The second

one is to cast the calibration matrix estimation problem as regularized least square problem, in

which the regularization takes into account the information known from a previously available

calibration matrix. Lastly, having a way to consider other phenomena that might be creating

some drift. The assumption considered is that other phenomena are also linear. To the best

of our knowledge, no other in situ calibration method has been designed to cope with other

phenomena that might affect the measurements, such as temperature.
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Although the calibration method presented was designed with a floating base robot in mind, it

can be easily applied to other systems if the following conditions are met:

• Being able to properly excite the sensor in all axes through the motions of the system.

• Having a sensor of the related linear phenomena close to the sensor.

• Being able to estimate the forces the sensor would be subjected to through the model of

the system.

• Having knowledge of previous calibration results of the sensor is optional and might

further improve the results.

5.1.1 Least Squares Solution

Assuming that for a series of raw measurements ri, we have the corresponding 6D forces

applied on the sensor fi, we can cast the problem of finding the calibration matrix and the offset

as a multiple linear regression using least squares fitting technique. The calibration matrix

estimation can be considered as six different problems in which each row is a separate problem

with six independent variables as input and one dependent variable output. For the sake of

simplicity, we solve all six axis at once. Thus the problem is stated as follows:

arg min.
C,o

1

N

N

∑
i=1

∥fi −Cri −o∥2
(5.2)

Where N is the number of data samples in the dataset. Because of the problem discussed in

Section 4.3.5, it is typically preferred to estimate offset separately from the calibration matrix,

as the offset can typically vary across different experiments due to temperature drift, so the

offset is removed from the raw measurements separately, and the calibration problem is reduced

to:

arg min.
C

1

N

N

∑
i=1

∥fi −Cri∥
2 . (5.3)

Regularization

Considering the linear model in (5.1), a least squares technique is used for performing linear

regression. In classical calibration matrix estimation algorithms, the input data (ri, fi), i =

1 . . .N are obtained by applying a set of known masses in known locations with the sensor

mounted on a workbench. For this reason, we refer to this kind of ex situ calibration matrix as

Workbench matrix. Assuming the calibration performed on the sensor was correct, we assume
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the new calibration matrix must not be very different from the Workbench matrix. To enforce

this assumption, we introduce a regularization term to penalize the difference with respect to the

Workbench matrix. The new calibration matrix is obtained through the following optimization

problem :

C∗ = arg min.
C∈R6×6

1

N

N

∑
i=1

∥

∥f̂i −Cr̂i

∥

∥

2
+λ ∥C−Cw∥

2
(5.4)

Where Cw ∈ R6×ρ is the Workbench matrix provided by the manufacturer, λ is used to decide

how much to penalize the regularization term and N is the number of data points in the data set.

The regularization is added in order to try to keep the calibration matrix as close to the

Workbench matrix, but with an improved performance once the sensor is already mounted on

the system.

Even if the six axis can be considered independent problems and solved individually, we

solve them all together for convenience purposes. This is performed doing the following steps:

• Consider the Matrix form of the least squares

∥

∥

∥
F⊤−CR⊤

∥

∥

∥

2

+λ ∥C−Cw∥
2 , (5.5)

where F⊤ ∈ R6×n is the matrix with the reference 6D forces where each columns is f̂i,

R⊤ ∈ Rρ×n where each column is r̂i.

• Given X ∈ Rm×n, vec(X) ∈ Rnm denotes the column vector obtained by stacking the

columns of the matrix X . In view of the definition of vec(·), it follows that

vec(AXB) =
(

B⊤⊗A
)

vec(X). (5.6)

, where ⊗ is the Kronecker product.

• If we consider that CR⊤ = I6CR⊤ then, using the Kronecker property mentioned in eq.

5.6, we can put eq. 5.5 in the column vectorized form:

∥

∥

∥
vec(F⊤)− (R⊗ I6)vec(C)

∥

∥

∥

2

+λ ∥vec(C)− vec(Cw)∥
2 . (5.7)

• The minimum of a quadratic form happens when the derivative is equal to 0. By exploiting

vector differentiation properties, the solution to eq. (5.7) is given by

vec(C∗) = (K⊤
R KR +λ I6∗6)

−1(K⊤
R vec(F⊤)+λvec(Cw)), (5.8)
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where KR = (R⊗ I6). It is important to notice that the size of I multiplying λ should

match the length of vec(Cw) which is a∗ρ , where a is the number of axis (six axis for

these type of sensors) and ρ is the number of raw signals.

Adding Linear Variables

When considering other phenomena as linear variables the final form of the problem can be

expressed as:

C∗,C∗
t = arg min.

C∈R6×6

1

N

N

∑
i=1

∥

∥f̂i − (Cr̂i +Ctt)
∥

∥

2
+λ ∥C−Cw +Ct −Ctw∥

2 . (5.9)

where Ct ∈R6×1 are the added linear variables calibration coefficients and t ∈Rn are the added

linear variable values. In this case, the problem is not only to estimate the calibration matrix C

and the offset o, but also Ct which accounts for the temperature changes in the sensor.

Given that Cr̂i +Ctt = [C,Ct ][ r̂it ] adding a linear variable can be considered adding an extra

raw signal to the previous mentioned solution. It comes down to:

• Augment the raw measurements matrix R with the added linear value Ra = [R, t], t ∈ Rn,

in R each column has all the raw measurements of a given raw signal.

• Augment the Workbench matrix by including the coefficients regarding the added linear

variable Cwa
= [Cw,Ctw ], where Ctw refers to the added linear variable value at the time of

calibration which is currently not available, so is set to 06.

• Since Cwa
∈ R6×ρ+1 this should be reflected in L = λ ∗ I6∗(ρ+1), since the Workbench

coefficients of the added linear variable Ctw are not provided, it is convenient to set the

last a values in the diagonal(L) to 0. This reflects the fact that we do not want to influence

the coefficients of the added variable with any previous information.

• The final form of the solution is

vec([C,Ct ]
∗) = (K⊤

Ra
KRa

+L)−1(K⊤
Ra

vec(F⊤)+Lvec(Cwa
)) (5.10)

This formulation allows to easily expand the solution to m number of extra linear variables. The

extra linear variable can have its offset removed or not. Assumptions can be made by taking

the first value and consider it the offset.
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5.1.2 Offset Estimation

Three methods were compared to remove the offset from the estimation problem.

1. In situ offset estimation proposed in [130], where the accelerometers measurements are

simulated using the kinematic model of the robot.

2. Centralized offset removal is obtained by removing the mean value from the raw mea-

surements (µr) and the reference values (µ f ).

3. One shot estimation estimates the offset as part of the calibration matrix by adding a

linear variable in which the reference values are all 1.

In both first 2 cases, we end up with a modified version of the raw data in which the effect

of the offset is removed. With a little abuse of notation we have:

r̂i =







ri −or in situ offset estimation

ri −µr centralized offset removal
(5.11)

f̂i =







fi in situ offset estimation

fi −µ f centralized offset removal
(5.12)

Where r̂i and f̂i are the data used to solve the model based in situ calibration problem (5.4).

The third case can be treated as an extra linear variable as described in Section 5.1.1;

Each offset estimation type is based on a different assumption:

1. physical assumption: gravity generates a sphere in the force space when making spherical

movements.

2. mathematical assumption: taking out the mean from the data set implies no offset in the

calibration data.

3. no assumption: adding a constant to the linear variables and allow least squares to work

it out along with the calibration matrix.

Centralized offset removal from training in situ datasets

Once the in situ calibration data (ri, fi), i = 1 . . .N are available, we need to get rid of the offset,

even before estimating the calibration matrix.

A method to obtain a problem in the form (5.3), without the need of computing the offset o,

is proposed here.
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We centralize the data since for a problem of the form of 5.2, the solution for the optimal

calibration matrix C∗ and optimal offset o∗ is given by

o∗ = µ f −C∗µr. (5.13)

So the form of the problem becomes independent of the offset and can be reduced to:

f̂i = fi −µ f , r̂i = ri −µr, (5.14)

arg min.
C∈R6×6

1

N

N

∑
i=1

∥

∥f̂i −Cr̂i

∥

∥

2
. (5.15)

Where µ f ∈ R6 is the vector of the mean of the wrenches, µr ∈ Rρ the vector of the mean of

the inputs, f̂i ∈ R6 and r̂i ∈ Rρ are the i-th centralized data. Note that even if in eq. (5.15) we

did not removed explicitly the offset, the resulting optimization problem has the same form of

eq. (5.3), and so for the calibration point of view the proposed algorithm is equivalent to offset

removal.

A proof for this statement is provided in 5.1.

Theorem 5.1. If C∗,o∗ are the solutions to the calibration problem (5.2):

C∗,o∗ = arg min.
C,o

1

N

N

∑
i=1

∥fi −Cri −o∥2 . (5.16)

We have that:

C∗ = arg min.
C

1

N

N

∑
i=1

∥

∥f̂i −Cr̂i

∥

∥

2
, (5.17)

o∗ = µ f −C∗µr. (5.18)

Proof. Using the definitions of f̂i and r̂i we can write the cost function in eq. (5.2) as:

1

N

N

∑
i=1

∥

∥f̂i −Cr̂i +µ f −Cµr −o
∥

∥

2
=

=
1

N

N

∑
i=1

∥

∥f̂i −Cr̂i

∥

∥

2
+

1

N

N

∑
i=1

∥

∥µ f −Cµr −o
∥

∥

2
+

+
2

N

N

∑
i=1

(f̂i −Cr̂i)
⊤(µ f −Cµr −o).
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As ∑
N
i=1 f̂i = 0 and ∑

N
i=1 r̂i = 0 from their definition in eq. (5.14), we get that the third term

of the is always equal to zero, and so we have that the calibration problem reduces to:

C∗,o∗ = arg min.
C,o

( 1

N

N

∑
i=1

∥

∥f̂i −Cr̂i

∥

∥

2
+

+
∥

∥µ f −Cµr −o
∥

∥

2 )

Noting that the minimum of the second term is always 0 for o = µ f −Cµr, ∀C, we prove the

theorem.

5.1.3 Calibration Data set

In general, there are 4 kinds of data sets that were considered to calibrate a sensor. They were

selected based on availability and excitation of the sensor.

• Grid: moving the legs in a grid pattern on a fixed pole. The contact is on the waist of the

robot. The leg is never bent so the center of mass of the leg during the experiment does

not change.

• Balancing Support leg: doing an extended one foot balancing demo with widespread

leg movements. The contact is on the support leg foot. Either left (BSL) or right (BSR)

depending on the support leg.

• Balancing Non-Support leg: doing an extended one foot balancing demo with widespread

leg movements. The contact is on the other leg foot. Either left (BNSL) or right (BNSR)

depending on the support leg.

• Z-Torque: doing movements designed to generate torques around the z axis, while the

robot is on a fixed pole.

A calibration data set could be formed by one of these kinds of data set or a combination of

them.

5.1.4 Estimation Types

Each strategy of offset estimation is considered an estimation type. Including temperature as

a linear variable (wT) or not (nT) in the estimation are also considered different estimation

types. If the temperature is considered, it is possible to take the first value as an offset (rTO)

or not (dTO). Considering the three offset removal possibilities, adding the temperature as a
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(a) Data set types in force 3D space
(b) Data set types in torque 3D space

Fig. 5.2 Data set types.

linear variable to each of them and the temperature offset option, results in the following nine

estimation types:

• Sphere with no temperature (SnTdTO): Refers to the fact that the in situ offset removal

is obtained by expecting a sphere in the force space when generating circular motions.

No temperature considered.

• Centralized with no temperature (CnTdTO): Refers to the centralized offset removal

method without considering temperature.

• One Shot with no temperature (OnTdTO): Refers to estimate the offset and the calibra-

tion matrix at the same time without considering temperature.

• Sphere with temperature (SwTdTO): Refers to including temperature into the sphere

type. But no temperature offset is considered.

• Centralized with temperature (CwTdTO): Refers to including the temperature into the

centralized type. But no temperature offset is considered.
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• One Shot with no temperature (OwTdTO): Refers to estimate the offset and the cali-

bration matrix at the same time considering temperature. But no temperature offset is

considered.

• Sphere with temperature (SwTrTO): Refers to including temperature into the sphere

type. Removing temperature offset.

• Centralized with temperature (CwTrTO): Refers to including the temperature into the

centralized type. Removing temperature offset.

• One Shot with no temperature (OwTrTO): Refers to estimate the offset and the calibra-

tion matrix at the same time considering temperature. Removing temperature offset.

5.2 Experiments

The improvement in the measurements among the six estimation types is compared among

the different kinds of possible calibration data sets to select the best way to improve the FT

sensor performance. For comparison, results using the Workbench matrix are included as

an estimation type in its own. At a first stage, the different data set types were compared

on their own. Results showed that the sphere estimation type using the Grid data set gave

the best results [8]. Adding the temperature required considering more than one data set, to

incorporate multiple temperatures. It was proven that adding the temperature lead to a further

increase in performance. Mixing types of data sets is better [7]. It was also made evident that

the estimation benefits from the knowledge of a Workbench matrix. In this case, the sphere

estimation type with temperature (SwTdTO) was shown to be better, followed closely by the

centralized estimation with (CwTdTO) or without temperature (CnTdTO), using the same λ

value. In these tests, no temperature offset was considered, the validation data set was collected

in between the calibration data sets and the One shot estimation was not used. To further test

the robustness of the in situ estimation, a different set of calibration and validation data sets

where collected.

5.2.1 Data sets used

The validation data sets were taken on two different days, both different from the day the

calibration data sets were collected. This was done to test the robustness to possible different

ambient conditions. The data sets and their temperature are showed in Table 5.1. The calibration

data sets were grouped into:



5.2 Experiments 95

• noTz, as indicated by name none of the Z-torque data sets were included.

• onlySupportLegs, from the balancing data sets, only the support leg was included. All

other data set types were included.

• AllGeneral, all data set types were included.

The reasoning behind this arrangement of data sets is to see what combination of data sets

provides best results. Since it was proven before that Grid and Balancing together improve the

calibration, the variables to test are the inclusion of Z-torque and non-support leg data sets.

Another aspect to test is the impact of removing a temperature offset in the calibration and

contact force estimation.

5.2.2 Evaluation Description

The evaluation could be roughly divided in two parts: one to observe the results of each

estimation type and the other to check the expected improvement on the robot of the generated

calibration matrices.

To understand better the behavior of the estimation types three comparisons are done. The

first uses the mean square error (MSE) calculated between the force-torque data using the new

calibration matrix and the model-based estimated data. A lower value would indicate a better

fitting of the data. Mean Square Error (MSE) of each axis is calculated as follows:

MSE =
1

N

N

∑
i=1

(fr
i − f̂c

i )
2, (5.19)

where fr
i is the 6D force reference vector and f̂c

i is the 6D force vector obtained using the

estimated calibration matrix of each estimation type.

A second way is to compute the mean of the absolute value of the difference between

matrices. This is to get a general idea of how much the calibration matrices differ one from the

other. The third way is looking at the offset values. This is to see how the different estimation

types affect the estimation of the offset. Although there is no ground truth for the offset to

serve as comparison, similarity in the offset values might indicate a general idea of what the

true offset might be.

The selection of the best calibration matrix the evaluation is done using the contact force

validation described in Section 4.1.3. This emulates the contact force estimation algorithm.

This form of evaluation permits to check the performance of the over all magnitude of the force

or the value of each axis. This is relevant since there is no guarantee that a λ value or the same

type of estimation gives the best results in all axis. The reason is that each axis can be seen as a
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Temperature◦C

Type Day Start End

Validation Data Sets

Balancing Support Leg 1 38.0 38.2

Balancing No Support Leg 1 38.3 38.4

Grid 2 27.3 27.7

Z-Torque 2 27.7 27.8

Balancing Support Leg 2 34.7 34.8

Calibration Data Sets

Grid 3 28.8 29.7

Grid_2 3 42.2 41.9

Z-Torque 3 29.7 29.8

Z-Torque_2 3 41.9 41.8

Balancing Support leg Left 3 30.8 31.0

Balancing Support leg Left_2 3 41.8 41.8

Balancing No Support leg Left 3 31.4 31.6

Balancing No Support leg Left_2 3 41.9 41.8

Table 5.1 Used Data sets.

separate problem.

5.3 Results

The sensor to calibrate is located near the hip of the left leg of an iCub robot. The λ values

used are: [0, 1, 5, 10, 50, 100, 1000, 5000, 10000, 50000, 100000, 500000, 1000000]. The

λ values where selected to span a reasonable range based on the tests to make C converge to

Cw, which happened when λ ≈ 1e+08. The validation is performed on each combination of

calibration data set (3), estimation type (9), and λ value (13). In total 352 calibration matrices

are evaluated counting the Workbench matrix.

5.3.1 Estimation types behavior

To verify the behavior of the estimation types only the results from a single calibration data set

is showed. The one selected is the onlySupportLegs data set. Nonetheless, the results extend to

the other two calibration data sets.
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MSE error

The MSE error of each estimation type is showed in Table 5.2. This value is linked to the

calibration data set in which the calibration matrix was estimated and is affected by the number

of calibration points. So, although the actual value is not something that can translate to other

data sets, the tendencies are. One of them is how the MSE reduces by taking into account the

temperature. For sphere types (SnTdTO, SwTdTO and SwTrTO), removing the temperature

offset further reduces the error while for the centralized (CnTdTO, CwTdTO and CwTrTO)

and OneShot (OnTdTO, OwTdTO and OwTrTO ) types there seems to be no benefit. It can be

observed that the fitting form the centralized and OneShot types are identical.

For the calibration data sets considered, the Centralized/OneShot types give better results in

general. The only exceptions appear in the noTz calibration data set. In this data set the sphere

types have an slight advantage in three axis: fx, τx and τz.

EstimationType fx fy fz τx τy τz

SnTdTO 12.1358 3.4528 62.1595 0.1222 0.0826 0.0299

SwTdTO 8.1290 3.4495 41.7705 0.1193 0.0781 0.0299

SwTrTO 10.8075 3.3826 5.7261 0.1192 0.0823 0.0299

CnTdTO 7.9941 3.4504 56.4681 0.1202 0.0764 0.0298

CwTdTO 8.0358 3.3441 3.5042 0.1188 0.0759 0.0297

CwTrTO 8.0358 3.3441 3.5042 0.1188 0.0759 0.0297

OnTdTO 7.9941 3.4504 56.4681 0.1202 0.0764 0.0298

OwTdTO 8.0358 3.3441 3.5042 0.1188 0.0759 0.0297

OwTrTO 8.0358 3.3441 3.5042 0.1188 0.0759 0.0297

Table 5.2 Mean Square Error on same Calibration data set.

Calibration Matrix differences

Table 5.3,depicted in Fig. 5.3, shows a comparison between the different estimation types

including the Workbench matrix. In general, the higher values are obtained when comparing

with the Workbench matrix. From these, the most different matrices are the ones obtained when

no temperature is taken into account. Sphere type with no temperature is the most different of

all with respect to the Workbench matrix.

Is possible to see that the resulting calibration matrix from centralized types is the same as the

one obtained through One shot types.

1Values are at 10−4
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EstimationType Workbench SnTdTO SwTdTO SwTrTO CnTdTO CwTdTO CwTrTO OnTdTO OwTdTO OwTrTO

Workbench 0 33.0389 28.1952 20.3309 31.0110 18.3735 18.3735 31.0110 18.3735 18.3735

SnTdTO 33.0389 0 6.9890 15.9404 2.8109 16.4152 16.4152 2.8109 16.4152 16.4152

SwTdTO 28.1952 6.9890 0 10.2228 4.5113 10.7766 10.7766 4.5113 10.7766 10.7766

SwTrTO 20.3309 15.9404 10.2228 0 14.3387 2.1403 2.1403 14.3387 2.1403 2.1403

CnTdTO 31.0110 2.8109 4.5113 14.3387 0 14.5363 14.5363 0 14.5363 14.5363

CwTdTO 18.3735 16.4152 10.7766 2.1403 14.5363 0 0 14.5363 0 0

CwTrTO 18.3735 16.4152 10.7766 2.1403 14.5363 0 0 14.5363 0 0

OnTdTO 31.0110 2.8109 4.5113 14.3387 0 14.5363 14.5363 0 14.5363 14.5363

OwTdTO 18.3735 16.4152 10.7766 2.1403 14.5363 0 0 14.5363 0 0

OwTrTO 18.3735 16.4152 10.7766 2.1403 14.5363 0 0 14.5363 0 0

Table 5.3 Mean Absolute difference1 between estimation types, including Workbench matrix.
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Fig. 5.3 Graphical representation of Table 5.3.

It is interesting to see that also the calibration matrix does not change between using the

temperature offset (CwTrTO) or not (CwTdTO) for the centralized types.

The difference between Sphere and Centralized/One Shot is small when both consider the

temperature while removing the temperature offset (SwTrTO and CwTrTO/OwTrTO) or not

considering the temperature (SnTdTO and CnTdTO/OnTdTO). From this, it is expected that

the calibration performance in those cases might be not far from each other.

Taking into account the λ values and looking at the difference with respect to the Workbench

matrix as shown in Fig. 5.4. The effect of the regularization parameter becomes clear, the

higher the value the smaller the difference with respect to the Workbench matrix.

Is worth noticing that taking into account the temperature makes the matrix more similar to

the Workbench matrix even for λ = 0. Since the new calibration matrix is expected to be
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relatively close to the Workbench matrix, this similarity even when no penalization is used

can be interpreted, to some extent, as a sign of better calibration. Considering this it can be

seen that the sphere estimation types benefits form adding the temperature and even more from

taking out the temperature offset. The centralized types benefit from adding the temperature,

although as mentioned before, there seems to be no added benefit from considering the offset

in the temperature.
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Fig. 5.4 Difference between estimation types and Workbench matrix while increasing λ .

Offset comparisons

The estimated offsets can be seen in Table 5.4. It shows that taking into account the temperature

offset changes the results of the offset estimation. The estimated offsets without temperatures

are not very different between them. Something similar can be seen for the offset obtained

considering the temperature offset. In contrast, the offset including temperature, but neglecting

the temperature offset, has considerably different behavior between the sphere and the other

types.
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EstimationType fx fy fz τx τy τz

SnTdTO 55.4488 4.7026 -24.7221 -0.0345 -0.3811 0.5427

SwTdTO 60.0955 4.8701 -35.1782 0.0944 -0.5585 0.5305

SwTrTO 58.8686 5.5569 -42.5960 0.1131 -0.4363 0.5453

CnTdTO 55.1129 4.7137 -24.2897 -0.0422 -0.3659 0.5439

CwTdTO 59.1127 8.4534 -83.3496 0.3281 -0.1478 0.5903

CwTrTO 56.5174 6.0268 -45.0282 0.0878 -0.2893 0.5602

OnTdTO 55.1129 4.7137 -24.2897 -0.0422 -0.3659 0.5439

OwTdTO 59.1127 8.4534 -83.3496 0.3281 -0.1478 0.5903

OwTrTO 56.5174 6.0268 -45.0282 0.0878 -0.2893 0.5602

Table 5.4 Offsets for a calibration data set for each estimation type.

The offset estimation has more impact on the Centralized and Oneshot types , which are once

again showed to give the same results between them. Is noteworthy that the fitting of the data is

equal even if the offsets are different as seen from the MSE error in Table 5.2. The temperature

coefficients and the calibration matrix are the same. What changes is the contribution from

temperature. It seems that the offset estimation of the Centralized/OneShot types collects both

the force-torque offset and the temperature offset into the force-torque offset if no temperature

offset is explicitly removed.

5.3.2 Contact Force Validation

This validation was performed twice. One using only the calibration matrices estimating the

offset in a few of the samples and the other using also the estimated offsets. The results of

the contact force validation are shown in Table 5.5 and Table 5.6. From the evaluation of the

estimation types behavior is clear that the Centralized types and the Oneshot types give the

same result. Because of this only the Sphere types and the OneShot were considered.

Using only estimated calibration matrices

In this case, the offset is calculated taking some samples of the test experiments in which

is known the robot is on one foot and not moving or moving slowly. The offset calculation

includes not only the forces but also the temperature if coefficients are available.

The SwTdTO type in noTz data set has the worst performance. The error is reduced greatly

by removing the temperature offset, as seen from the fact that SwTrTO has a consistently

lower value than SwTdTO in the each data set. Therefore removing the temperature offset is
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relevant for the sphere types. For the OneShot types, the result is the same with or without the

temperature offset.

The best result is achieved by OwTdTO and OwTrTO with 5.498 N with λ = 1000 as the

average magnitude of the contact force. In general, better results are achieved by including the

temperature and using the OneShot estimation types. The results with the SwTrTO are also

close to the best result.

The added benefit of the previous calibration matrix information seems more relevant for

estimation types that do not consider the temperature. It is also possible to appreciate that

increasing λ is beneficial up to a certain point after which it increases the error. This is expected

since the Workbench is considered to be correct when the sensor was unmounted, so becoming

similar to it has benefits. On the other hand, the mounting changed the effectiveness of it, so

being to close instead is not that good. This is quite clear in Fig. 5.5.

It can be appreciated from the contact force magnitude of all the validation data sets, Fig. 5.6,

that there is a considerable lower estimated contact force comparing the new matrices against

the Workbench. It is more critical for the x and y force axes. Even so, the value is not zero, as it

would be if the model and the sensor matched perfectly.

Using also estimated offsets

When using the estimated offset, the best results is obtained by OwTrTO with λ 100 on the

calibration data set AllGeneral, Table 5.6. A graphic representation of the results can be seen

in Fig. 5.5. The average magnitude of the external force is 5.8647 N which is slightly higher

than the one obtained estimating the offset on the validation data set. This is a very nice result

since it means we can avoid estimating the offset every time we start using the robot or doing

an experiment and still have a reasonably good performance of the sensor. It also hints that the

estimated offset is close to the true offset of the mounted sensor.

It is curious to see that the λ giving the best average behavior is lower than in the case of using

an offset estimated on the validation data set. By using the estimated offset the need to be

closer to the Workbench matrix is reduced.
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λ Total

Data set Estimation Type 0 1 5 10 50 100 1000 5000 10000 50000 100000 500000 1000000 By Type By dataset

SnTdTO 14.7353 14.7229 14.6936 14.6531 14.3588 14.0140 10.5665 12.1406 13.3500 13.4198 12.9258 12.1937 12.0329 173.8069

SwTdTO 20.8714 20.8546 20.8302 20.7792 20.4633 20.0729 15.2905 11.1392 11.5100 12.2514 12.0020 11.6935 11.8216 209.5798

SwTrTO 8.0631 8.0634 8.0598 8.0505 8.0048 7.9535 8.0022 9.6557 10.5474 11.7435 11.8696 11.8197 11.8223 123.6554

OnTdTO 21.4168 21.4005 21.3597 21.2985 20.8185 20.2611 13.5881 10.7362 12.2508 12.5915 12.0330 11.4229 11.5627 210.7403

OwTdTO 6.8583 6.8588 6.8500 6.8391 6.7752 6.7267 7.5632 10.5579 11.5182 11.8767 11.7000 11.3755 11.5138 117.0134

noTz

OwTrTO 6.8583 6.8588 6.8500 6.8391 6.7752 6.7267 7.5632 10.5579 11.5182 11.8767 11.7000 11.3755 11.5138 117.0134 951.8093

SnTdTO 8.9899 8.9870 8.9852 8.9788 8.9340 8.8807 8.1122 7.0044 7.0709 8.7356 9.3448 10.1252 10.3787 114.5273

SwTdTO 7.8568 7.8522 7.8563 7.8474 7.8220 7.7810 7.2966 6.7480 6.9413 8.5509 9.1050 9.8410 10.2381 105.7365

SwTrTO 5.9704 5.9744 5.9739 5.9719 5.9617 5.9476 5.8722 6.2594 6.8156 8.6707 9.2587 10.0058 10.2779 92.9601

OnTdTO 8.4813 8.4812 8.4742 8.4694 8.4277 8.3757 7.6485 6.5679 6.5622 7.9906 8.5353 9.3383 9.8301 107.1824

OwTdTO 5.5253 5.5224 5.5242 5.5197 5.5159 5.5066 5.4980 6.0596 6.6191 8.1749 8.6419 9.3260 9.7944 87.2280

suppOnly

OwTrTO 5.5253 5.5224 5.5242 5.5197 5.5159 5.5066 5.4980 6.0596 6.6191 8.1749 8.6419 9.3260 9.7944 87.2280 594.8624

SnTdTO 8.8400 8.8376 8.8288 8.8280 8.7825 8.7298 7.9563 6.7394 6.7075 8.4183 9.1163 10.0199 10.3114 112.1158

SwTdTO 7.6831 7.6772 7.6757 7.6696 7.6372 7.6019 7.1228 6.5264 6.6573 8.3207 8.9462 9.8235 10.2860 103.6277

SwTrTO 5.9078 5.9070 5.9082 5.9047 5.8935 5.8812 5.7327 5.9845 6.4650 8.3763 9.0411 9.9018 10.2382 91.1419

OnTdTO 8.3123 8.3180 8.3107 8.3098 8.2603 8.2133 7.4991 6.3815 6.3095 7.7947 8.4078 9.3503 9.8907 105.3580

OwTdTO 5.6319 5.6321 5.6326 5.6320 5.6240 5.6056 5.5185 5.9089 6.4084 7.9956 8.5170 9.3321 9.8544 87.2930

All

OwTrTO 5.6319 5.6321 5.6326 5.6320 5.6240 5.6056 5.5185 5.9089 6.4084 7.9956 8.5170 9.3321 9.8544 87.2930 586.8295

Total By λ 163.1593 163.1028 162.9699 162.7426 161.1946 159.3902 141.8470 140.9359 150.2790 172.9581 178.3033 185.6028 191.0157

Workbench 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642

Table 5.5 Average magnitude of the contact force using only estimated calibration matrices.
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Data set Estimation Type 0 1 5 10 50 100 1000 5000 10000 50000 100000 500000 1000000 By Type By dataset

SnTdTO 14.761 14.751 14.725 14.689 14.426 14.127 11.224 13.534 14.833 14.739 14.207 13.434 13.179 182.63

SwTdTO 21.386 21.367 21.349 21.305 21.053 20.725 17.116 14.779 14.856 14.452 14.022 13.594 13.671 229.68

SwTrTO 8.7331 8.7367 8.7304 8.7365 8.7305 8.7276 9.1473 10.916 11.609 11.811 11.597 11.059 10.887 129.42

OnTdTO 21.959 21.944 21.912 21.859 21.439 20.958 15.469 13.667 14.719 14.673 14.182 13.785 13.973 230.54

OwTdTO 7.469 7.4694 7.4693 7.454 7.4014 7.3759 8.1999 10.817 11.619 11.667 11.393 10.94 11.026 120.3

noTz

OwTrTO 7.469 7.4694 7.4693 7.454 7.4014 7.3759 8.1999 10.817 11.619 11.667 11.393 10.94 11.026 120.3 1012.9

SnTdTO 9.4503 9.4505 9.4492 9.4439 9.4308 9.3986 9.1777 9.4486 10.032 11.329 11.628 11.967 11.943 132.15

SwTdTO 10.132 10.132 10.131 10.124 10.131 10.144 10.313 10.951 11.404 12.072 12.181 12.458 12.6 142.77

SwTrTO 7.0649 7.0602 7.0611 7.0615 7.0675 7.0794 7.2527 7.919 8.2931 8.8514 8.9516 9.0766 9.0849 101.82

OnTdTO 9.9833 9.9845 9.9838 9.9833 9.9844 9.9951 10.069 10.639 11.161 12.163 12.418 12.9 13.14 142.4

OwTdTO 6.0123 6.0116 6.0139 6.0117 6.0181 6.026 6.2234 7.0101 7.4735 8.3683 8.6422 9.1567 9.4101 92.378

suppOnly

OwTrTO 6.0123 6.0116 6.0139 6.0117 6.0181 6.026 6.2234 7.0101 7.4735 8.3683 8.6422 9.1567 9.41 92.378 703.91

SnTdTO 9.3042 9.3057 9.298 9.296 9.2784 9.2545 8.9752 9.071 9.5762 10.919 11.254 11.654 11.691 128.88

SwTdTO 9.9729 9.9645 9.9677 9.9716 9.9789 9.9759 10.093 10.658 11.074 11.782 11.918 12.228 12.421 140.01

SwTrTO 6.9187 6.9182 6.9185 6.9183 6.9151 6.9269 6.9783 7.4763 7.8228 8.4421 8.5773 8.7733 8.8471 98.433

OnTdTO 9.712 9.722 9.7206 9.7194 9.7138 9.722 9.7785 10.278 10.791 11.868 12.14 12.667 12.97 138.8

OwTdTO 5.8685 5.868 5.8659 5.8647 5.8708 5.8657 5.9457 6.5411 6.99 8.0151 8.3514 8.9122 9.227 89.186

All

OwTrTO 5.8685 5.868 5.8659 5.8647 5.8708 5.8657 5.9457 6.5411 6.99 8.0151 8.3514 8.9122 9.227 89.186 684.49

Total 178.08 178.03 177.94 177.77 176.73 175.57 166.33 178.07 188.34 199.2 199.85 201.61 203.73

Workbench 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642 16.6642

Table 5.6 Average magnitude of the contact force using also estimated Offset.
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(b) Using also estimated Offset, Table 5.6.

Fig. 5.5 Magnitude contact force versus λ

Grouping by data set types

Grouping the results by data set the calibration data sets can be ordered from best to worst

in the following order: AllGeneral, onlySupportLegs and noTz. The behavior of a group of

results by data set is clear using the pallets of colors in Fig. 5.5. There is a big improvement

when adding the Z-Torque data set and just a small improvement form adding the Balancing

Non-Support Leg on top of that. Showing that the Z-Torque gives relevant new information
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to the calibration data set, while the Balancing Non-Support Leg adds few more information.

Therefore, for the considered data set types the optimal combination is composed of Grid,

Z-Torque, Balancing Support Leg. The Balancing Non-Support Leg can be considered optional

and not strictly required. The fact that the best results not using the estimated offset is without

using the Balancing Non-Support Leg data set reinforces the previous statement. It can be

seen that adding the temperature creates a clear difference in the results of a data set. It almost

divides each different calibration set results in two. At least two of the optimal calibration data

sets are needed for the compensation of temperature.

These results are congruent with the space each data set covers in the forces and torques 3D

space, Figure 5.2. In this figure, is possible to see that Balancing Non-Support leg is more or

less contained between the Grid and Balancing Support Leg. The other three data set types

are clearly different among them. Therefore is possible to use that graphical representation to

gauge the expected usefulness of a data set.

By Axis

Table 5.7 shows the best results by axis and the performance of the Workbench matrix. From the

difference in the results with respect to the Workbench is possible to see that the most affected

axis by the mounting are fx and fy. Is possible to see that fz, τx and τy, actually perform better

using the estimated offset. The fact that only the fy and fz get better results in both cases taking

into account the temperature might imply these are the axis mainly affected by the temperature

drift.

Although the variation in lambda is big looking at Figures 5.6 and 5.7 it can be seen that the

difference among the best solutions is actually very small. It is also possible to see that most of

the axes obtained best results with lambda values of 5000 or lower. This might help refine the

search space by adjusting the considered lambda values.

Using only estimated C Using estimated C +o

Axis Best C value Best C value workbench

fx SuppOnly λ5 OnTdTO 3.03893 N All General λ5000 OnTdTO 3.14859 N 8.9007 N

fy SuppOnly λ1000 SwTdTO 2.42722 N All General λ10 OwTrTO 3.05630 N 11.1776 N

fz SuppOnly λ10 OwTrTO 2.61958 N SuppOnly λ1000 OwTrTO 2.40174 N 3.9954 N

τx SuppOnly λ1 SnTdTO 0.68899 Nm All General λ100 OnTdTO 0.58208 Nm 0.7901 Nm

τy SuppOnly λ10000 OnTdTO 0.48474 Nm SuppOnly λ100000 OnTdTO 0.43218 Nm 0.7146 Nm

τz SuppOnly λ100000 SnTdTO 0.15184 Nm All General λ100 OwTdTO 0.18044 Nm 0.2769 Nm

Table 5.7 Best calibration matrix by axis



106 Model Based In Situ Calibration of Six Axis Force-torque Sensors

200 400 600 800 1000 1200 1400 1600 1800

Samples

-30

-20

-10

0

10

20

30

40

50

N

F
x
 : l_upper_leg

F
x1

F
x2

F
x3

F
x4

F
x5

(a) force x-axis.

200 400 600 800 1000 1200 1400 1600 1800

Samples

-30

-20

-10

0

10

20

30

40

N

F
y
 : l_upper_leg

F
y1

F
y2

F
y3

F
y4

F
y5

(b) force y-axis

200 400 600 800 1000 1200 1400 1600 1800

Samples

-30

-20

-10

0

10

20

30

40

N

F
z
 : l_upper_leg

F
z1

F
z2

F
z3

F
z4

F
z5

(c) force z-axis.

Fig. 5.6 Contact forces on validation data set; 1) Workbench matrix, 2) Best not using estimated

offset, 3) Best by Axis not using estimated offset, 4) Best using estimated offset, 5) Best by

Axis using estimated offset.
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Fig. 5.7 Contact torques on validation data set; 1) Workbench matrix, 2) Best not using

estimated offset, 3) Best by Axis not using estimated offset, 4) Best using estimated offset, 5)

Best by Axis using estimated offset.
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5.4 Insights

The first thing to notice is the fact that the Centralized types and the One Shot types give the

same results to all effects. So only one of the two needs to be considered. Since the problem

was formulated to include other variables it is more convenient to use the One Shot type than

the Centralized type eliminating the need to do special considerations for the offset estimation.

From the results, Section 5.3, it can be seen that the relevance and impact of each offset estima-

tion strategy depend on the amount of data available. For small data, the physical assumption

gives the most improvements. Moving to bigger amounts of data seems to allow having no

assumptions to estimate more accurately the calibration. The loss of effectiveness when using

the physical assumption could be related to the fact that it does not consider temperature at all

for the offset estimation, while the other two are able to include the information to some extent.

There might be a way to try to consider this by using more than one Grid data set at different

temperatures to estimate the offset.

Observing the behavior of the excitation of the sensor in the 3D spaces of forces and torques

allows to have valid insights into the worth of a calibration data set. In the Fig. 5.2, is evident to

see that Z-Torque type of data set provides new information. It is also visible that the Balancing

Non-Support Leg gives redundant information. This was confirmed when looking at the results

grouping by calibration data set.

It can be seen that is enough to consider temperature as a linear phenomenon, although explor-

ing nonlinear models is still worth investigating. The fact that by adding the temperature and

temperature offset we are able to use the offset estimated as constant proves that the drift is

mainly generated by the temperature. Is also very convenient for the general use of the robot

since erases the need for estimating the offset every time. Even so, is worth noticing that the

sensor performance might be slightly better if the offset is re-estimated before the experiment.

The results from the second validation might give a hint to what range of λ values is worth

exploring since most of the best results are obtained using a value of 5000 or less.

When observing the results by axis in detail is possible to see that the decrease in performance is

centered around the axes fx and fy. This might guide an investigation to improve the mounting

procedures. These results also suggest that the effect of temperature in the normal use of the

robot is mainly on the fy and fz axis.
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5.5 Exploiting in situ methods in a robot

The result from the in situ calibration is a new calibration matrix. It is when using this

calibration matrix that the improved measurements are obtained. Therefore the new calibration

matrix should be used somehow by the robot to obtain the improved measurements and better

dynamic performance as a consequence.

The process to obtain the in situ calibration data sets can also be exploited to measure the

response of the sensor to the excitation produced by the robot.

5.5.1 Gain Selection and calibration of new sensor

A sensor without calibration sends raw measurements. It is possible to calibrate such a sensor

directly in situ. The Model Based in situ calibration can be used without the regularization part

by setting λ to zero. Although it has been shown that the calibration procedure can benefit

from the regularization, it is still able to achieve very good performance without it.

While gathering the in situ calibration data set is possible to observe the true response of

the sensor to the excitation produced by the robot. If the sensor allows, it is possible to use

this information to select the gains to match the full-scale to the actual use of the sensor. As

mentioned in Section 3.3.2, adjusting the range may allow a further increase in the calibration

results.

During this process is also possible to verify if a sensor is close or suffering from saturation as

mentioned in Section 4.3.2. This was the case for the first FTsense strain 2. This sensor allows

to change the gains of each individual channel.

Using the motions to gather in situ calibration data sets, it was possible to observe the profile

of the raw data with regards to a known excitation. With this information, saturation can be

avoided while keeping the maximum allowed range by changing the gains of the sensor.
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Fig. 5.8 Results of gain adjustment.

An example of the results from adjusting the gains can be appreciated in Fig 5.8. The

proposed procedure is the following:

1. With a non calibrated sensor perform the regular motions for model based in situ calibra-

tion.

2. Verify looking at the raw data how far or close are the values of the raw data.

3. The robot configuration with the highest excitation can be saved for later using the

Visualization tool.

4. Diminish gains if there is saturation, increase gains if for the totality of the experiment a

channel is no where near saturation point.

5. Repeat until behavior of the channels is relatively close to saturation, but with enough

margin to account for extra forces.

Using this procedure there is no regularization possible since there is no other calibration

matrix to use in the penalization term. Therefore, no second validation procedure is required

to select an adequate λ value. Fig. 5.9 shows the comparison between a normally calibrated

sensor and the in situ calibrated sensor during a support leg data set. In both cases the offset

was removed. It can be observed that the performance of the in situ calibrated sensor is clearly

superior.
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Fig. 5.9 Comparison of an ex situ calibrated sensor and an in situ calibrated sensor.

As seen in Section 4.2.1 the sensor calibrated with this method has the best results among

all compared sensors. The success of this method arises from both the improvement due to

calibrating in situ and adjusting the range of the sensor for the specific use.

5.5.2 Secondary Calibration Matrix

It is possible that no access to the raw data of the sensor is available online or that is not possible

to change the current calibration matrix. In these cases, the proposed solution takes the form of

a secondary calibration matrix. The secondary calibration matrix is the required transformation

of the current calibration matrix to the new calibration matrix. It requires the knowledge of the

current calibration matrix used by the sensor. It is calculated as follows:

C =Cs ∗Cw →Cs =C ∗C−1
w (5.20)

The secondary calibration matrix can be saved as a configuration parameter that is loaded at

the launching of the robot. Before using the values obtained through force-torque sensing,
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they can be corrected by pre-multiplying with the secondary calibration matrix. This way the

measurements used by the robot are as good as if the sensor was calibrated using in situ.

5.5.3 Adding the temperature

To ensure backwards compatibility with sensors that do not have temperature measurements,

the contribution of the temperature is added separately. The coefficients of temperature can be

similarly stored as a configuration parameter of the robot. In case no temperature exist or no

temperature calibration is available, these coefficients are loaded as zeros by default.

5.6 Observed Improvements in Floating Based robots

By improving the measurements of the six axis FT sensor through in situ calibration, it was

possible to see improvements in the behavior of the floating base robot iCub.

Fig. 5.10 iCub’s Joint torque controller.

The force-torque sensing has three main uses in the iCub:

• As a threshold to know if a stable contact has been established between the robot and the

ground.
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• To give the feedback to the low-level joint torque controller.

• To estimate dynamical quantities used by high-level controllers, such as the center of

pressure (CoP) and the zero moment point (ZMP).

As a threshold

The simplest use is as a threshold. When the load on the sensors reaches a chosen value, the

controllers change state assuming a stable contact has been achieved. The chosen value can be

a percentage of the total body weight of the robot. Example of applications are balancing [106]

and standing up [110].

To calculate dynamic quantities

The forces acting on a moving robot can be separated into two categories: forces exerted by

contact and forces transmitted without contact (gravity and, by extension, inertia forces). The

CoP is linked to the former, and the ZMP to the latter. Nonetheless, it has been shown that both

points coincide [115]. Therefore, is possible to use the contact force information to calculate

dynamic quantities such as the ZMP and by extension affect the estimation of the center of

mass (CoM).

The CoP is defined as the point where the resultant force can be exerted with a zero resultant

moment. When the contact is with a flat ground the CoP and ZMP, can be calculated as :

PCoP = sτ/s f , (5.21)

where PCoP = PZMP is the CoP (ZMP), sτ is the torque measurement of the FT sensor at the

ankle and s f is the force measurement of the FT sensor at the ankle.

Using the linear inverted pendulum model constraining the height of the CoM to be constant

(PCoGz
), the CoM dynamics can be estimated from the ZMP with the following equation:

ÈPCoM = (PCoM −PZMP)
g

PCoMz

, (5.22)

The FT sensor measurements have a direct impact on the estimation of the ZMP and as a

consequence in estimation of the CoM. This information is used in a walking controller [111].

Feedback for joint torque controller

Through the estimation scheme, Section 2.4, the joint torques are obtained and send as feedback

to a joint torque controller. The scheme of this controller can be seen in Fig. 5.10. Description

of the variables in the scheme can be found in Table 5.8. It is a PID controller with friction
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Description SI unit

Gains

Kp Coefficient for the proportional term of PID DC%2/Nm

Kd Coefficient for the derivative term of PID DC%s/Nm

Ki Coefficient for the integral term of PID DC%/Nms−1

KPWM Transformation matrix between PWM and joint torque Nm/DC%

Kτ Kτ = 1/KPWM DC%/Nm

Kbem f Coefficient of Viscous friction Nm°−1 s−1-1
ÅKreal
τ Transformation matrix between PWM and Motor torque Nm/DC%

Torque variables

τd Joint Torque set as a reference via high-level controller Nm

τest Joint Torque estimated via WBD in the firmware Nm

τPID Joint torque error after passing through the PID Nm

τ f f Feed forward term for the joint torque Nm

τ f Joint torque term for compensating friction Nm

τm Motor torque obtained by transformation of PWM Nm

τbias Bias Force= CoriolisForce+GravityForce Nm

Other variables

q Joint Position ° or rad

q̇ Joint velocity °s−1 or rads−1

θ Motor shaft Position ° or rad

θ̇ Motor shaft velocity ∗ °s−1 or rads−1

Table 5.8 Variables used in the joint torque controller scheme.

compensation. The feedback values are the estimated joint torques using the measurements

from the FT sensor.

The dynamic behaviors of iCub are obtained through the high-level controllers. They

contain many tuning parameters that affect directly the behavior of the robot. From the uses of

the FT sensor on iCub, it can be seen that the measurements of the sensor are used mainly in

an indirect way by the high-level controllers. Therefore finding quantitative measures of the

improvement in the dynamic motions of the iCub caused by the in situ calibrated sensor is a bit

challenging. Nonetheless, it was possible to observe clear qualitative changes in the behavior

that gives an idea of the improvement.

2Duty Cycle Percentage.
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Contact force coherence when switching contact

A problem observed during a balancing demo [106], see Fig. 5.11, was that the robot has a

hard time switching contacts while using the low-level joint torque controller. As mentioned in

Section 5.6, the feedback of the controller is estimated using the six axis FT measurements.

After observing the behavior of the sensors when switching contact, it could be observed an

incoherent behavior in the value of the contact force.

(a) Bending

knee on left leg

support

(b) Stretched

leg on left leg

support

(c) Moving

back to front

and sideways

(d) Stretching

to the front,

side view

(e) Bending

knee on right

leg support

(f) Streched leg

on right leg sup-

port

(g) Video QR code

Fig. 5.11 Images from the extended balancing demo with contact switching

A typical sequence before doing the balancing demo, involves removing the offset when

is known only one contact exist with the environment. This offset estimation requires the

information from the gravity vector. This can be imposed in configuration files or measured

using an IMU. This offset is then subtracted to the measurements. There are three possibilities

to remove the offset:

• The robot is hanging from the torso and gravity is measured with IMU.

• The robot is standing on one leg and the gravity is measured using IMU.

• The robot is standing on one leg and the gravity is imposed to be acting in the axis normal

to the ground.

The test performed consist in switching from single support to double support. If the offset

is calculated with the robot standing on one foot the sequence is: single support → double
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Contact Forces Error

Support in situ Fx Fy Fz Ex Ey Ez

Double No -14.0252 -6.8170 342.5232 -14.0252 -6.8170 17.8122

Double Yes -5.5024 0.4523 324.2421 -5.5024 0.4523 -0.4689

Left No -17.5327 18.1905 342.6850 -17.5327 18.1905 17.9740

Left Yes -2.4991 -0.6910 325.3190 -2.4991 -0.6910 0.6080

Right No -28.3467 -9.4651 343.5918 -28.3467 -9.4651 18.8808

Right Yes -8.3183 -0.0448 323.8349 -8.3183 -0.0448 -0.8761

Table 5.9 Offset estimated while hanging using IMU

Contact Forces Error

Support in situ Fx Fy Fz Ex Ey Ez

Left No 0.0733 0.0390 323.9000 0.0733 0.0390 -0.8110

Left Yes 0.0119 0.0543 324.2001 0.0119 0.0543 -0.5109

Double No -4.3180 -31.3537 324.2382 -4.3180 -31.3537 -0.4728

Double Yes -8.1497 -5.3398 326.7298 -8.1497 -5.3398 2.0188

Right No -36.9491 -21.6199 343.4446 -36.9491 -21.6199 18.7336

Right Yes 7.6190 -7.2226 321.7694 7.6190 -7.2226 -2.9416

Table 5.10 Offset estimated while on left foot imposing gravity.

support → other single support. Instead if the offset is calculated with the robot in the air the

sequence is: double support → single support → double support → other single support.

Since the robot is standing on flat ground it is expected that the only force acting on the robot

feet is gravity on the z axis. With no other force acting on the robot the forces in x and y should

cancel each other in double support or be 0 when on single support. With this as ground truth is

possible to evaluate the estimated contact forces at the feet when switching. Results are shown

in Tables 5.9 and 5.10. It can be observed that using the in situ calibrated sensors ( by means of

the secondary calibration matrix ), reduces the error in the contact forces and is therefore more

coherent when switching form a contact to another.

Improvement of low-level torque controller on a titled sensor

Seeking to shift the joint limits at the ankle for having a more adequate range for walking

motions, a tilted sole was designed for the foot, see Fig. 5.12. Even though the tilt affects also

the sensors at the ankle, the model was updated accordingly to account for this tilt. So the

change in orientation is accounted for. With the tilted sole mounted, self-sustained oscillations

in the centroidal dynamics of the walking controller [111] where observed, Fig. 5.13. These
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oscillations prevented the robot to walk using the controller.

When walking on flat ground the load of the sensor is mainly on the z-axis. In the tilted

sole, the contact force at the ankle sensor is no longer only in the z-axis. Therefore, the

measurements in the x-axis and y-axis played a more important role in the estimation of the

CoM and ZMP. The sensors are more affected in the x and y axis by the mounting process,

even when a dynamometric screwdriver is used to ensure the torques at the screws are the same.

The oscillations disappeared when using in situ calibration of the sensors. No other change was

required on the robot.

Fig. 5.12 CAD representation of tilted sole.

Fig. 5.13 Self-sustained oscillations of the center of mass (CoM) and zero moment point(ZMP).

Less oscillation during balancing demo

The balancing demo [106], was observed to have oscillations of the robot when reaching the

different pre-defined position tasks. After the six axis FT measurements were improved, it was

considered feasible to increase the gains of the low-level controller.

It was observed that the movements of the robot seemed more defined and there were clearly

fewer oscillations and less time required to switch to the next position task. Thanks to the

reliability of the measurements, the feedback of the low-level controller is more useful to

control the robot creating a faster convergence to the desired value.
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5.7 Conclusions

The developed algorithm has been proved to improve the measurements of the sensor and

the dynamic behavior of the robot. It successfully accounts for temperature drift and can be

extended to account for other lineal phenomena. The possibility to use a constant offset with

little sacrifice of sensor performance is a good feature since it can eliminate the need to estimate

the offset before every experiment. It minimizes the preparation steps for using the robot. The

graphic representation of the sensor excitation in the 3D force and torque space has proven

useful to provide intuitive insight on the comprehensive excitation of the sensor. Although

the estimation can work without previous knowledge it benefits from an ex situ calibration

matrix. So ex situ calibration methods are not rendered useless. This specially the case for

compensation of the dynamic response of the sensor.

Based on the insights gained from the development of the algorithm and the study of ex situ

calibration methods a calibration device was designed. It is meant to give a fast, easy, reliable,

almost human-free, comprehensive way of exciting the sensor in conditions close to the use of

the sensor. It also considers the possibility to allow the study of the dynamic response of the

sensor. It is detail in Chapter 6.



Chapter 6

A comprehensive Ex Situ Calibration

Device for Six Axis Force-torque Sensors

The final stage of FT sensors development is its basic tests to determine the technical and

operational characteristics. Particular attention is paid to the calibration of FT sensors, which

is the main source of accuracy errors. Although an in situ method has been proposed, it still

benefits from the knowledge of the ex situ calibration matrix. Furthermore it is unable to

account for the dynamic behavior of the sensor. Here a review of the current calibration method

for FT sensors is described and an alternative solution is presented.

6.1 Current Calibration Method

Current method calibration for the IIT-produced six axis FT sensors (FTsense) requires many

manual operations for positioning and weight carrying. This process is slow and quite demand-

ing on the person carrying out the calibration. A recurrent issue is that there is no dedicated

room to install and host the calibration setup. This implies positioning the setup each time a

new batch of sensors is meant to be calibrated. An appropriate place to put the metal plank is

required. Serves as base for positioning the setup perfectly aligned with gravity as in Fig. 6.1.

Otherwise, errors are introduced into the calibration. This affects both the time spent and the

repeatability of the procedure. Once this is done is possible to move to the acquisition of data.

The calibration procedure requires assembling the calibration setup into different positions.

Each position shifts the orientation of the sensor with respect to gravity in a different way. In

some of them, multiple data points are collected by shifting the load in the different axes. The

procedure generates 24 calibration points. The mounting structure weights around 200 gr. The

masses used are 5 kg and 25 kg, not considering the weight of the mounting structure. The
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Fig. 6.1 Current calibration method position example.

expected FT values are in Table 6.1. The excitation of the sensor in the force and torque space

can be seen in Fig. 6.2.
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Fig. 6.2 Excitation of sensor with current calibration method.

6.1.1 Revision of calibrated sensors

The positions of the calibration method can be grouped, by load, into two groups. Using the

resulting grouped positions, Sphere Analysis tool, described in Section , was applied to evaluate

the calibration data from over two hundred sensors. The results revealed that there is a relevant

error in some positions. Some of the measurements resulted in clear outliers when trying to

project them to a sphere in the 3D force space. The sphere was calculated using some of the

values in Table 6.1. This behavior can be seen in the figure 6.3 The most affected is the Fx
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Table 6.1 Expected forces(N) and torques(Nm) from calibration procedure

Test num Position description Fx Fy Fz τx τy τz

1 5 kg on y- 0.0000 0.0000 51.0120 -7.5243 0.0000 0.0000

2 5 kg on x+ 0.0000 0.0000 51.0120 0.0000 -7.5243 0.0000

3 5 kg on y+ 0.0000 0.0000 51.0120 7.5243 0.0000 0.0000

4 5 kg on x- 0.0000 0.0000 51.0120 0.0000 7.5243 0.0000

heavy loads on strain gauges axes

5 25 kg on z+ 0.0000 0.0000 247.2120 0.0000 0.0000 0.0000

6 25 kg on z- 0.0000 0.0000 -247.2120 0.0000 0.0000 0.0000

7 25 kg on x+ strain axis 1 -247.2120 0.0000 0.0000 0.0000 -1.2361 0.0000

8 25 kg on x- strain axis 1 247.2120 0.0000 0.0000 0.0000 1.2361 0.0000

9 25 kg on strain axis 2 123.6060 214.0919 0.0000 -1.0705 0.6180 0.0000

10 25 kg on strain axis 2 -123.6060 -214.0919 0.0000 1.0705 -0.6180 0.0000

11 25 kg on strain axis 3 123.6060 -214.0919 0.0000 1.0705 0.6180 0.0000

12 25 kg on strain axis 3 -123.6060 214.0919 0.0000 -1.0705 -0.6180 0.0000

axis x+ pointing up

13 5 kg on y- -51.0120 0.0000 0.0000 0.0000 -0.2551 -7.1417

14 5 kg on z+ -51.0120 0.0000 0.0000 0.0000 -9.4372 0.0000

15 5 kg on y+ -51.0120 0.0000 0.0000 0.0000 -0.2551 7.1417

axis y+ pointing up

16 5 kg on x+ 0.0000 -51.0120 0.0000 0.2551 0.0000 -7.1417

17 5 kg on z+ 0.0000 -51.0120 0.0000 9.4372 0.0000 0.0000

18 5 kg on x- 0.0000 -51.0120 0.0000 0.2551 0.0000 7.1417

axis x- pointing up

19 5 kg on y+ 51.0120 0.0000 0.0000 0.0000 0.2551 -7.1417

20 5 kg on z+ 51.0120 0.0000 0.0000 0.0000 9.4372 0.0000

21 5 kg on y- 51.0120 0.0000 0.0000 0.0000 0.2551 7.1417

axis y- pointing up

22 5 kg on x- 0.0000 51.0120 0.0000 -0.2551 0.0000 -7.1417

23 5 kg on z+ 0.0000 51.0120 0.0000 -9.4372 0.0000 0.0000

24 5 kg on x+ 0.0000 51.0120 0.0000 -0.2551 0.0000 7.1417
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Fig. 6.3 Projection to the expected sphere and outliers.

axis. The error in the Fx axis is shown in the histogram 6.4. This might imply there is an

error coming from the way the sensors are calibrated. It is most likely a consequence of the

procedure being cumbersome and prone to human error.

Fig. 6.4 Histogram of errors in Fx .

In summary, even if the sensors calibrated using this procedure have been used in the iCub,

it is possible to observe that the calibration is not perfect and the procedure itself suffers from

the following disadvantages:

• Cumbersome,

• Susceptible to Human Error,

• Needs to be mounted every time,

• Does not consider temperature.
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6.2 Proposed solution

Considering the disadvantages of the current calibration procedure and with the experience

of the developed in situ calibration algorithms, a solution was envisioned. The objective is to

design a new calibration device that would allow fast and easy semi-automatic calibration of

six axis FT sensors. It should be self-contained and allow to account for other phenomena, like

the temperature, without being very expensive. The possibility to perform dynamic analysis of

the sensor response is desirable.

6.2.1 Design requirements

From the desired objective and the expected use of the calibrated sensors, a set of design

requirements were compiled. The requirements are:

1. The excitation should be at least equal to the current method

2. The loading of the weight should be done a limited number of times between 3 and 2.

3. The loading of the weights should not be perceived as difficult or dangerous by personnel

experienced with the current method.

4. Human intervention should be limited to mounting the sensor once, loading of the weights

and give the signal to start the calibration.

5. The device should withstand a load of 35kg.

6. The maximum error of the reference used in calibration should be below 0.5N for the

forces and 0.02N·m for the torques.

7. Should allow calibration of up to 3 sensors at a time.

8. The mounting of a sensor should be simple enough to be done in less than 2 min based

on feedback from the production department.

9. The total cost should not exceed the budget of e10,000.00.

10. The number of DoF should be less than 6.

11. The motion envelope should be contained in a space smaller than 1.5m2.

12. The device should allow to excite the sensor with controlled temperature in the range of

15o to 55o.
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13. It should allow for dynamic behavior analysis of the sensor.

The proposed solution is a device that has been named iCalibrate. The device is currently

under design.

6.3 Conceptual design

The conceptual design phase provides a description of the proposed system in terms of a set

of integrated ideas and concepts about what it should do, how it should behave, and what it

should look like, which will be understandable by users in the manner intended.

6.3.1 Degrees of freedom

The aim is to excite the sensor in all six axis. Based on the experience with in situ calibration

algorithms, the excitation of the sensor was aimed to span a sphere in the force space while

exciting all three axis in the torque space.

Knowing that the torques are a linear combination of the forces, with the right combination

of three DoF, it should be possible to fully excite the sensor. To achieve this is enough to have a

pitch or roll joint followed by a yaw joint. The fact that the yaw comes afterwards is important

since it allows the actual shift in the orientation of the sensor frame to span a sphere in the force

space. Changing the order of the first two DoF results in an incomplete sphere as shown in Fig.

6.6 and a need for bigger space in Cartesian space to span the sphere. This two DoF alone are

unable to fully excite the sensor in the torque space, so a third joint is added. The maximum

excitation of the missing torque axis can be achieved having the third joint at 90° with respect

to the sensor frame. The third joint is selected to be just binary 0° and 90°.

As a result, the mechanism will have three joints with [pitch,yaw,pitch] configuration. The

sphere in force space can be obtained using a range of motion of 180° in the pitch and 360° in

the yaw and two positions ( 0° and 90° ) on a second pitch.

6.3.2 Passive Joint

Since its enough for the third DoF to have only two configurations, no actuation is required.

Instead of manually changing the position of the third joint, it is possible to use a self-locking

mechanism. When pointing the sensor to the ground and releasing the lock on the third joint,

gravity itself will make the joint reach the other self-locking position when moving the pitch by

90°. Then the third joint would self lock in the other selected position. This solution helps to

reduce the costs and the complexity by not requiring another motor.
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6.3.3 Excitation of the FT sensor

Using the model of the device is possible to calculate the force-torque at different positions for

a given mass value.

Assuming joint position [0,0,0] is the device in a completely straight position as in Fig. 6.8.

A possible sequence to excite the sensor is the following:

1. Start from [-90,0,0];

2. Move to [90,0,0]

3. Shift yaw by 90°

4. Move from [90,0,0] to [-90,0,0]

5. Shift yaw by 90°

6. Repeat this twice

7. Move to [0,0,0]

8. Do a full 360° on the yaw axis.

9. Move to [-90,0,0]

10. Unlock passive joint

11. Move to [0,0,0]

12. Do a full 360° on the yaw axis.

Movements from 1 to 6 excite the sensor by shifting the load from z axis to x or y.

Movements 7 and 8 fully excite the sensor in the x-y plane for the current load. Movements

9 and 10 take advantage of gravity to move the passive joint. Finally moves 11 and 12 are

specifically designed to excite the sensor mainly with a torque around Z. The resulting motion

sequence can be seen in Fig. 6.5.

There are many more possible movements that can be done. These ones where design to

create a direct comparison with the current calibration method and show the potential excitation

of the sensor using the device. The wrenches of this motion can be compared using a similar

mass to the ones used in the current method. A comparison with the positions with 5.2kg can be

seen in Fig. 6.7. The resulting excitation is bigger than the current calibration method. These

motions include complex loading scenarios as well. Swapping the first two DoF results in the

limited excitation in Fig. 6.6.
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Fig. 6.5 Joint trajectories of the motion sequence.
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Fig. 6.6 Excitation with yaw DoF first.

The link lengths should be as small as possible to reduce the torque and the workspace size.

The concept design can be seen in Fig. 6.8.

6.3.4 Sensor interfaces

A fast and easy assembly of the sensors should not compromise the sturdiness of the design.

This can be achieved by having a low number of screws while reinforcing the coupling of the

interfaces with physical features. They should also allow stacking them to calibrate more than

one sensor at a time and be sensorized to allow temperature excitation. A Peltier device might

be a solution. The design should consider a way to deal with the mounting issues.
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Fig. 6.7 Excitation of sensor with a 5.2kg mass.

Fig. 6.8 Conceptual Deisgn of iCalibrate

6.3.5 Weights

Attaching the load to the device should be simple and almost effortless for the human, while

remain secured in place. For this, the load can be divided into 5kg weights. These weights

can be loaded in place one at a time. The structure in which they are loaded can be a tube of

non-circular cross-section to avoid the movement of the weights as much as possible. The piece

to keep the weights in place should be such that even rotating the orientation in all directions it

does not fall down.

6.3.6 Dynamic excitation features

To perform frequency response analysis one solution is to have friction compensation in the

second motor. This allows to use the device as a pendulum in certain configurations. Another
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option is to create a passive joint which allows a rope to be attached and another structure to

hold and release the weight hanging from the rope in a repeatable way.

To perform step response is enough to have a passive joint designed to release the weight

from the structure upon the reception of an activation signal.

Given the fact that this device can excite the sensor in the full range of the theoretical force

sphere, it might allow to perform dynamic calibration even in complex loading scenarios.

6.4 Embodiment Design

Embodiment design is the part of the design process in which, starting from the principle

solution or concept of a technical product, the design is developed in accordance with technical

and economic criteria and in the light of further information, to the point where subsequent

detail design can lead directly to production [102].

6.4.1 Model

To have an accurate estimation of the forces and torques, the CAD model is exported to urdf

format following a procedure similar to the export done for the iCub. The CAD is generated

with a single sensor. The adaptation when using other sensors is possible thanks to the stacking

pattern of the sensor interfaces. Using the iDyntree library [129] is possible to load a urdf model

and generate the required estimation. Some scripts were prepared to perform the estimation

based on the model. This allows to quickly check and revise different aspects of the performance

of the device. Using this the number of sensors in the model can be increased. Verification of

the sensors excitation and resulting torque at the motors is possible. It was done in such a way

that the software developed for in situ calibration can be used to calibrate the sensors later on.

6.4.2 Motor Selection

Since the design only requires two actuated joints, only two motors are required. Using the

model is possible to calculate the maximum torque experienced by each motor. The resulting

torques can be seen in Fig. 6.9

With the current model, stacking three sensors the peak torques for motor 1 and motor 2

are 131.3495Nm and 39.4500Nm respectively.

The formula proposed by Harmonic Drives for the average torque is:

τav =

(

n1t1|τ1|
3 +n2t2|τ2|

3 + · · ·nntn|τn|
3

n1t1 +n2t2 + · · ·nntn

)1/3

(6.1)
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Fig. 6.9 Joint torques of the motion sequence.

motor 1 motor 2

106.1922 Nm 24.4700 Nm

Table 6.2 Average torque

Where τav is the average torque, ti is the seconds it stays with the torque, ni is the speed (in rpm)

of the motor during ti, and τi is the torque of the motor during ti. Using the described motion

sequence in 6.5, the speed and time can be calculated by selecting the time it should take to

finish the whole sequence. The calculated τav using this values for a 35 kg mass is shown in

Table 6.2.

With the information about the torque peak and average is possible to select a motor.

6.4.3 Inertial and Position Sensor selection

To full fill requirement about the accepted error in the reference wrenches, its important to

consider the possible sources of error. The errors can come from:

• Errors in the measured or estimated orientation of gravity

• Errors in the dimensions of the links and components

• Deformation of the link due to load

• Error in the value of the known mass

The mass will be custom made with attention to minimize this error. Similar case for the

dimensions of the links and components. The geometry and material of the link will be selected
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to avoid deformations. The most likely source of error will be in the knowledge about gravity.

This knowledge can be obtained from two sources: an estimation using the information from

the joint positions or measuring gravity with an inertial sensor. In both cases, commercial

solutions were investigated to verify possible noise values.

Selecting noise values in joint positions

The reference was the magnetic rotary encoder AS5045. With a resolution of 12 bits, each bit

the least significant bit (LSB) is 0.0879°. In the data sheet is mentioned that in the best case

scenario the error is <±0.5° and in worst is <±1.4°.

Selecting noise values in measured gravity

The BOSCH BNO055 was taken as reference. At normal mode the accelerometer has a range

of ±4 g it means 8 g in total. Considering the resolution is 14 bits then the LSB is

LSB = 8g/214 = 0.00048828g = 0.0048m/s2 (6.2)

If we use the configuration in which range goes from ±2 g we have that

LSB = 4g/214 = 0.0024m/s2 (6.3)

Error is assumed to be ±4 LSB so:

• 0.0192 m/s2 for ±4 g configuration

• 0.0096 m/s2 for ±2 g configuration

Error in reference wrenches due to noise

With these values, an amplitude for noise in the measurements can be selected. The exploration

for the encoders started at ±0.5° noise amplitude and for the inertial sensor the noise amplitude

of 0.03 m/s2 was selected so that we get ±0.15 m/s2 in the error. Results are presented in

Table 6.3

From this is possible to observe that the reference IMU is a good option for the inertial

sensor, while the encoder is on the limit with the best case scenario. Looking for other option

for the encoders is necessary.
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estimation noise amplitude Fx (N) Fy (N) Fz (N) Tx (Nm) Ty (Nm) Tz (Nm)

IMU 0.015 m/s2 0.1519 0.1500 0.1524 0.0170 0.0160 0.0062

IMU 0.03 m/s2 0.3404 0.3431 0.3348 0.0387 0.0361 0.0134

encoders 0.5° 0.6003 0.6017 0.6568 0.0960 0.0711 0.0448

encoders 0.25° 0.3105 0.3006 0.3360 0.0484 0.0367 0.0231

encoders 0.1° 0.1208 0.1232 0.1311 0.0197 0.0140 0.0095

Table 6.3 Error in the references due to noise amplitude.

6.4.4 Sensor interfaces

The FTsense strain 2 was used as reference for the mounting holes. The sensor interface was

divided into one male and female part to allow stacking. Without counting the screws for

mounting the sensor, there are only four other screws required. On the male side, each of these

four screws has an extrude that fits a hole in the female side, to make the coupling more robust

and easy. The section where the sensor is mounted was designed such that just the border of

the sensor is in contact. This is to minimize mounting stress due to a not fully planar surface

from the manufacturing process. A through-hole in the middle was added to allow the passing

of cables. The hole at one of the borders is pointing to the x axis of the sensor frame. It allows

the passing of cables and fast orientation of the sensor with respect to the mounting interface.

A CAD of the design can be seen in Fig. 6.10 and Fig. 6.11.

(a) Back view.

(b) Isometric View.

(c) Front View.

Fig. 6.10 Female interface.
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(a) Back view.

(b) Isometric View.

(c) Front View.

Fig. 6.11 Male interface.

6.5 Design status

The status of the current design can be seen in Fig. 6.12. The choice of DoF allows to have a

motion envelope that could be easily contained in 1.5 m2, Fig. 6.13. An assembly of the sensor

interfaces can be appreciated in Fig. 6.14 Some of the missing features are not strictly required

to build a first prototype. Therefore have a lower priority in the design pipeline.

(a) Back view.

(b) Isometric View.

(c) Side View.

Fig. 6.12 Current status of the iCalibrate design.
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(a) Back view. (b) Isometric View. (c) Side View.

Fig. 6.13 Motion Envelope of iCalibrate.

(a) Isometric view. (b) Side View.

Fig. 6.14 Assembly of a sensor with both sensor interfaces.

6.5.1 Components currently under design

As mentioned the full design is still in progress. The features that are still under development

are:

1. Shell of the motors

2. Motor and Weight interfaces

3. Weights and load support.

4. Sensorization of sensor interfaces

5. Passive Joint

6. Weight release joint

7. Rope attachment joint

They are ordered in order of relevance, the last four are not strictly required for a prototype.
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6.6 iCalibrate As a Benchmark

Benchmark is defined as something that serves as a standard by which others may be measured

or judged according to the Merriam-Webster dictionary. Competitive benchmarking is a direct

competitor-to-competitor comparison of a product, service, process, or method [5].

All six axis FT sensors have the same relationship with gravity. So any sensor subjected to

the motions described in Section 6.3.3, should ideally have the same measurements in force

and torque. This allows to have a universal comparison among six axis FT sensors.

The device is designed to be repeatable, easy and fast to use. Considering this, the device could

be used to compare the performance of different sensors or even calibration methods. The

sensor interfaces would require adaptation to mount other six axis FT sensors.

For benchmarking sensors, there is no need to change the CAD model since they are already

calibrated and no reference data is required. Thus the device is able to perform that comparison

seamlessly. It would only be necessary to have a way to log the data such that it allows

synchronization between experiments. Nonetheless, since the estimation is done using the

model from CAD, by updating the model with the new interface and the sensor model, the

estimation can be performed. Adding the possibility to add weights in 5 kg intervals allows for

an easy way to collect validation data sets with data completely different from the calibration

data. This can allow to compare different calibration methods even in different sensors.

The sensorized interfaces may also allow to verify the response of different sensors to

temperature. Allowing to include temperature drift response as part of the benchmarking.

Depending on the size of the sensors to compare it might be possible to mount three different

sensors at the same time. Having synchronization of the data almost for free. This would

guarantee even further the validity of the comparison.

In summary, the device might be a benchmark candidate for both sensors and calibration

methods. The reasons are :

• Excitation is based on gravity, which ideally affects all ft sensors alike.

• The motions excite comprehensively the sensors.

• With minimum effort is adaptable to other sensors.

• It is designed to be repeatable and easy to use.

• Chances for human error are kept to a minimum.

• The design for the weights makes fast and easy to collect validation data sets, different

from the calibration data.
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• The exposure to a controlled temperature allows verification of sensors response to this

phenomena.

• Possibility to mount more than one sensor at a time makes data synchronization simple.

6.7 Conclusion

Even if the device is still unfinished, the theoretical bases of its functionality make it look very

promising. Not only will it allow to calibrate better and faster, it might also allow study different

sensor designs and calibration algorithms at a cost lower than the value of two commercial

force torque sensors. It is also interesting the possibility to perform reliable dynamic calibration

of the sensor even in complex loading scenarios. This is something that to the best of the

authors knowledge is still not present in the literature.

Despite the improvement that can be achieved in the performance of FT sensors, it still holds

that they are unable to distinguish multiple contacts in the same sub-model. To grant this

functionality to robots exploring the possibility of calibrating and use of other sensors such as

tactile sensor arrays is depicted in Chapter 7.





Chapter 7

Artificial Skin as a Force-torque Sensor

Contact detection is possible due to an exchange of forces between bodies. Tactile sensors

are made with the main goal of detecting contact. When taking a look at the functioning

principles, it is possible to see the potential for measuring forces and torques. In this Chapter,

the possibility of using the artificial skin of the iCub as a FT sensor is explored.

7.1 Requirements for using skin as force-torque sensor

To be able to use the skin as a force-torque sensor on the robot there are two elements required

beforehand:

• Equate the value of the capacitance of each taxel to a pressure value.

• The location of each taxel with respect to a frame in the piece of cover in which is

mounted.

The methods required to achieve these preliminary steps were not directly developed by the

thesis author. Nonetheless, as a user the author gained deep understanding of the methods and

was involved in improving their usability.

Pressure Calibration

For the pressure calibration of the skin, the most convenient method is to have even pressure

distribution over the skin. This allows to calibrate all sensors at the same time, making the

process faster and less cumbersome. To achieve this, two methods were available: the first one

was vacuum bags [66]. Later on, the calibration device [65] became available. What follows

is a brief description of both setups and some of the typical curves of pressure vs capacitance

of the taxels.
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Vacuum bags

The vacuum bags method [66] is based on the fact that by removing the air from a bag,

the difference in pressure with respect to the outside of the bag creates an evenly distributed

pressure on the surface of the object inside the bag.

The setup is built with a vacuum pump, a pressure sensor, a customized bag, and the artificial

skin connected to a PC, see Fig. 7.1. Typical data collected using this method can be seen in

Fig. 7.2. It can be observed that the behavior of each taxel is different from each other although

a general tendency can be appreciated. Based on this behavior the mathematical model to relate

the capacitance value to the applied pressure for sensors was approximated with a 5th order

polynomial calculated as follows:

P(Ci) = ai +biCi + ciC
2
i +diC

3
i + eiC

4
i + fiC

5
i (7.1)

where P(Ci) is the pressure applied to a specific sensor and ai,bi,ci,di,ei, fi are the sensor-

specific constants representing the model for sensor i. The model is found by solving a least

square optimization problem using the experimental data.

Fig. 7.1 Vacuum bag experiment setup.

This setup was created as a proof of concept. Its advantages are that it using the evenly

distributed pressure is possible to excite every taxel at the same time with a known pressure.

This saves time and makes it repeatable. Cost is another advantage since, except for the vacuum

pump, most of the elements are cheap and easily available. Also, the dimension of the skin that
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Fig. 7.2 Vacuum bag experiment data.

can be calibrated is determined by the size of the bag.

There are two crucial elements of this method. The first and most important is the customization

of the vacuum bag. In the original setup, this bag was sealed with hot glue. This made it so

that it was easy to melt the bag and hard to achieve a decent sealing. It was also easy to break

the bag, so the bag itself should be considered disposable. Another issue found in the bag was

the possibility of the two sides of the bag coming in contact during the suction of air. This

prevented the pressure to build up properly in the bag. It is dependent on the choice of skin to

calibrate and the place in which the hole of the bag is done.

During the usage of this method, the customization and sealing of the bag were improved by

using simple market solutions used for plumbing. This increased the reliability of the bag while

decreasing the time required to customize a new bag. The pieces themselves are not glued

and therefore reusable avoiding damaging the bag with heat. The used solution can be seen in

Fig. 7.3. To avoid having the two sides coming in contact a honeycomb structure was used to

allow the passing of air and avoid blocking the hole with the other side of the bag.

The second element is the control of the vacuum pump which was manual. This made the

smooth transition of pressure user dependent and susceptible to variation. A more comprehen-

sive solution to deal with issues in both elements was developed by other members of the lab.

The result was the Pressure chamber device described below.
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Fig. 7.3 Vacuum bag sealing improvement.

Pressure chamber device

As described in [65] a sketch of the device is shown on Fig. 7.4. It consists of a micro-

controller, a PC, an air compressor, a regulator, a pressure chamber and a compliant bladder.

The compressor pushes the air to the regulator that controls the pressure in its output. The

regulator is able to increase the pressure with the rate that is required by the user until the

desired maximum pressure is reached. The desired pressure is sent from PC through the

microcontroller to the regulator and it separately measures the actual pressure on the output.

As the air is pumped into the pressure chamber, the compliant bladder first wraps around the

skin piece and then starts applying uniformly distributed pressure on the skin. The information

from the skin about the tactile sensor values is also sent to the PC at the same time.

The PC software gathers the data about the skin sensors’ values and the pressure inside the

chamber and logs it while the pressure is increasing. When the maximum desired calibration

pressure is reached, the pressure is released in the chamber with the regulator. Then the gathered

data is processed in order to create a mathematical model for each sensor that relates the applied

pressure to the sensor capacitance value.

The typical curves for the capacitance and pressure using the device can be seen in Fig. 7.5.

Fig. 7.6 depicts how the fifth order polynomial model, indicated with blue, is fit to the data

points, given as red circles. It was observed that all the sensors have slightly different responses,

varying in noise level, gain, initial offset, and even the shape of the curve.

This solution improved the control of the pressure, had better sealing and expanded the range

of excitation of the artificial skin during calibration. It eliminated the need for having a bag that
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Fig. 7.4 Schematic of the design of the calibration device. The electrical connections are

indicated with black solid arrows and the air flow with blue arrows.

200 400 600 800 1000 1200
0

20

40

60

80

Index

D
iff

er
en

tia
l p

re
ss

ur
e 

(k
P

a)

200 400 600 800 1000 1200
120

140

160

180

200

220

240

A
ve

ra
ge

 c
ap

ac
ita

nc
e 

(r
aw

)

Fig. 7.5 Pressure and average capacitance during the experiment.

had its own hermetic sealing. Nonetheless, it restricted the maximum size of skin components

that could be calibrated and could benefit from small design changes to facilitate its use and

reliability. One such improvement could be finding a smart way to keep the different types

of artificial skin shapes to calibrate in a fixed and centered way. This should allow a better

wrapping of the bag around the skin component. Another improvement would be to find the

right material for the bag that wraps around the skin.
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Fig. 7.6 Fifth order polynomial model (blue) fit to data points (red) in order to relate capacitance

to pressure for an individual sensor.

3D taxel position

Given the geometry of the cover in which the skin was mounted, directly measuring the exact

position of a taxel to a chosen frame seemed a difficult task with low guarantees of success.

Instead, the approach for finding the position of the taxel 3D position was an indirect method

using the different documentation of its components. A combination of resources of the

electrical design, the mounting procedure and the CAD of the cover are employed. The general

steps are :

Fig. 7.7 Cover and skin with number id.

• Using this documentation we are able to identify the id of each triangle as shown in

Fig.7.7.

• This information is then used to create the appropriate frames in the CAD model.
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• The CAD model is exported to simmechanics format.

• Then a tool to export simmechanics format to urdf is used. This tool was originally made

for obtaining the model of iCub.

• The icub-model-generator is used to estimate the position of the triangles based on its

center and its orientation.
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Fig. 7.8 Plot using the generated 3D positions and normals.

From this process, we obtain not only the 3D position of the taxels, but also the normal vector

to each taxel. An example of the resulting positions and normals is depicted in Fig. 7.8, where

the red circles are the taxels and the blue arrows the normals. A more detailed description of

the process can be found in Appendix C.

7.2 Force Estimation Improvement

Once the artificial skin of iCub is calibrated the tactile sensors are able to measure the pressure

applied to each one of them individually. However, the sensors are positioned on the surface as

an array of discrete taxels with gaps between them. In order to compensate for this shortcoming,

the presented algorithm exploit pressure interpolation techniques to deal with the gaps between

tactile elements, this improves the accuracy of the tactile sensors by adding information in the

spaces where the pressure cannot be explicitly measured.

Every point on the skin covering a given link can be represented by a pair of surface

coordinates, that we refer as the couple (u,v) ∈ [u1,u2]× [v1,v2].

The method used for interpolation consists of the following steps:



144 Artificial Skin as a Force-torque Sensor

1. Locations of the sensors in the u-v plane are collected.

2. Pressure values of the sensors are measured. The values are stored in the p axis which is

orthogonal to the u-v plane.

3. The sensors are modeled as a circle (with the appropriate area) labeled with a certain

number of data points. The pressure is assumed to be constant over the area of the sensor,

therefore all the data points of a specific sensor have the same value in the p axis.

4. The trilinear interpolation based on a Delaunay triangulation is used to interpolate the

pressure field between the data points [Octave Authors].

The output from the interpolation allows us to define the pressure field p(u,v). An example

of the pressure field while a 1 kg mass is put on the skin is shown in Fig. 7.9.

The 3D positions of all the sensors are known but there is no information about the surface

between the sensors. Therefore, the surface has to be interpolated between the known values.

The positions corresponding to u-v field can be divided into 3 separate interpolation problems,

one for each axis. The trilinear interpolation allows us to define the interpolated field of each

axis of the position vectors, i.e. x(u,v), y(u,v) and z(u,v).

The position vector expressed in the link frame corresponding to a location on u-v plane

can be expressed as follows:

r(u,v) = x(u,v)e1 + y(u,v)e2 + z(u,v)e3, (7.2)

where e1,e2,e3 are the basis of the 3D space.

The normal vectors of all the sensors are known, but there is no information about the

surface normals between the sensors. Therefore, the normals have to be interpolated between

the known values. The normals corresponding to u-v field can also be divided into 3 separate

interpolation problems, one for each axis. The trilinear interpolation allows us to define the

interpolated field of each axis of the unit vectors, i.e. nx(u,v), ny(u,v) and nz(u,v), with the

actual normal n̂(u,v) given by

n̂(u,v) =
nx(u,v)e1 +ny(u,v)e2 +nz(u,v)e3

|| nx
2(u,v)+ny

2(u,v)+nz
2(u,v) ||

. (7.3)

Assuming that

∣

∣

∣

∂ r
∂u

× ∂ r
∂v

∣

∣

∣
≈ 1 the total force vector can be found as:

f =
∫ v2

v1

∫ u2

u1
p(u,v)n̂(u,v)dudv, (7.4)

while the total torque vector can be found as follows:
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µ =
∫ v2

v1

∫ u2

u1
((p(u,v)n̂(u,v))× r(u,v))dudv. (7.5)

(a) Side view

(b) Three-Point Perspective

(c) Top view

Fig. 7.9 Pressure field of a skin patch while 1 kg is applied.

So we end up with a force-torque measurement with respect to the frame in which the 3D

positions where measured.

7.3 Application

The information gained through the calibration of the artificial skin is a 6D force vector. It

can now be used as a force-torque sensor at the contact location. This is particularly useful

to measure the forces of multiple contacts individually. A direct application is to endow this

capability to the robot.
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7.3.1 Contact Force and Joint Torque Estimation using Skin

Once we have the force-torque measurement, we can consider this directly as a contact external

force. Finally, we use this information plus the location of the contact obtained from the skin to

estimate the joint torques of the robot. The innovation is applying the interpolation techniques

to improve the accuracy of the tactile sensor and the inclusion of the tactile sensor into the

estimation scheme as a source of force and torque information.

Adding Known External Force-torques To The Joint Torque Estimation Scheme

To consider the effect of having the knowledge of an external force-torque at a known location

(Kfk
K), it is necessary to extend the current framework detailed in Section 2.4 to include the new

type of contact. This is achieved by adding the characteristics of this contact to all parts of the

equation Cx = b and equations (2.8b)(2.8c).

In the case of the C matrix, the 4th contact type would be a 6×0 matrix:

Ck = 06×0 (7.6)

and for the b term the equation would be:

b = ∑
L∈Lsm

BXL
LφL −B ftot

B , (7.7)

where

Bftot =

(

∑
L∈Lsm

∑
D∈ism(L)

BXD
DfD,L − ∑

K∈Ksm

BXK
Kfk

K

)

(7.8)

Ksm is the set of force-torque contacts estimated by the skin in a sub-model. This allows the

robot to estimate multiple external contact forces correctly as long as most of the contacts hap-

pen in the areas covered by skin. This improves the scheme described in Section 2.4.3, where

the estimation when multiple contacts happened in the same sub-model relies on assumptions

that are often false.

The known force-torques are added to the estimated force-torques to obtain the joint torque

as follows:
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F fE,F =− EfF,E (7.9)

F fE,F = ∑
L∈γE(F)

FXL

(

LφL + Lfx
L + ∑

K∈KL

LXK
Kfk

K

)

, (7.10)

EfF,E = ∑
L∈γF (E)

EXL

(

LφL + Lfx
L + ∑

K∈KL

LXK
Kfk

K

)

, (7.11)

where KL is the set of force-torque contacts estimated by the skin that belongs to a given link L.

Assumptions

• The inertial parameters of the robot are known.

• The position and orientation of the taxels are known and included in the model of the

robot.

• The robot skin has been previously calibrated (up to 50 kPa) using vacuum bags, using

the technique described in [66].

Experiments

For the experiments a set of calibration masses (0.2 kg, 0.5 kg, 1 kg and 2 kg) were used. The

weights are positioned either directly on the right lower leg of the iCub or hanging from the leg

with a cloth stripe as shown in Fig. 7.10.

During experiments, we focus on the right lower leg of the robot and more specifically in

the knee joint. Regarding the joint torque estimation using the FT sensors, both sensors at the

leg are involved. The skin patch in the right lower leg of the iCub, with 380 discrete sensors,

was used for the estimation using the skin.

There were mainly two locations in which the weights were applied. When the calibration

weights are placed on the right lower leg in a position close to the ankle, the distance from the

knee is between 12 cm and 13 cm. On the other hand, when hanging from the lower leg near

the knee, the distance is between 4 cm and 5 cm. The torques are estimated with respect to the

frame of the joint in the knee. The external force-torques and joint torques obtained using the

FT measurements are estimated using the methods described in Section 2.4. When using the

skin, the external force-torques are estimated applying the interpolated technique to the skin

measurements as described in Section 7.2. Then these values are included as known external

force-torques into the extended estimation scheme described in Section 7.3.1. An example of
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(a) Adding 1 kg mass on top of

right lower leg

(b) Hanging 1 kg mass from right

lower leg

(c) Set of calibration masses used

in the experiments

Fig. 7.10 Positions and weights used in the experiments.

the skin being activated by the contact and its pressure field representation can be seen in Fig.

7.9.

In most of the experiments, the right leg was raised at 90o. There were two sets of

experiments. The first set was used to compare the results of force estimation using the

skin with and without interpolation against a known force due to gravity. The second set of

experiments was a comparison between the joint torque estimation of the FT sensor and the

interpolated skin measurements .
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In the set of force skin estimation experiments the weights where added one after the

other starting from 0.5 kg up to 3 kg placing most of them on top of the right leg. As it can

be appreciated in Fig. 7.11. Since the weights to reach 3 kg are different we had to take off

previous weights and then add the 3 kg hanging from the leg, see Fig. 7.10.

In the set of joint torque experiments, the first experiment was to put 1 kg on top of the

right leg (Fig. 7.12a). The next experiment consisted in increasing the load on the leg of the

sensor to see the performance of sensor when the load varies (Fig. 7.12c) in an attempt to see

the response of the scheme to a changing external force. Another experiment was intended to

see the performance of the sensor near it’s calibration limit, in this case, 3 kg made the skin

go near the limit (Fig. 7.12b). And the last experiment was to verify the performance when

the angle at which the load is applied changes. This was done by lowering the leg from 90o to

75o in intervals of 5o, we observed that at 70o the weight would start slipping and fall down

(Fig. 7.12d).

Validation

For the validation of the forces, the calibrated masses were placed on top of the skin normal to

the ground as shown in Fig. 7.10a. The forces applied by the masses were then compared to

the forces estimated with and without using the interpolation method. For comparison, we use

the magnitude of the contact forces calculated using equation (7.4).

The magnitude of the forces applied to the robot using the interpolated pressure field can be

found with the following equation:

fc =
∫ v2

v1

∫ u2

u1
p(u,v)dudv (7.12)

where fc is the total contact force and p(u,v) is the pressure value with respect to the

location in the u-v plane.

The estimation without interpolation assumes that the pressure is uniform over the area of

the sensor and all sensors are covering an equal area. This estimation method is referred from

here forth as simple estimation. The magnitude of the forces using the simple estimation can

be found with the following equation:

∥ fc∥= ∥A
k

∑
i=1

pin̂i∥ (7.13)

where fc ∈ R3 is the total contact force, pi ∈ R+ is the pressure of a particular sensor,

A ∈ R+ is the area of the tactile sensor, n̂i ∈ R3 is the normal of the taxel and k is the total

amount of taxels.



150 Artificial Skin as a Force-torque Sensor

Table 7.1 Force results

Forces N Absolute Error N

Masses Ref. Simple Interpolated Simple Interpolated

0.5 kg* 4.905 4.6376 5.2482 .2674 .3432

1 kg 9.81 7.591 9.935 2.219 0.125

1 kg * 9.81 8.184 10.095 1.626 0.285

1.5 kg 14.715 11.606 14.142 3.109 0.573

1.7 kg 16.667 14.659 17.723 2.008 1.056

1.9 kg 18.639 15.528 19.054 3.111 0.415

3 kg 29.43 22.555 27.697 6.875 1.733

*the mass is on top off the right lower leg

For the torque, finding the exact location of the contact is required for a ground truth.

This location is estimated from the taxels that are activated by the contact in both joint torque

estimations. In this case, we will consider proximity to the torques estimated with the FT

sensor as the validation, since these values currently allow the iCub robot to perform dynamic

movements such as balancing [92].

Contact Force Estimation Results

The magnitude of the forces using the interpolated estimation (red), given by the magnitude

of Eq.(7.4), is compared to the magnitude of the forces using the simple estimation (blue),

given by Eq.(7.13). The green line displays the reference force applied on the skin during the

experiment. After every five or six samples, the program was stopped in order to change the

weights applied on the skin.

It can be observed in Table 7.1, that the simple estimation underestimates the total force

applied. This is due to the fact that some of the force is applied in the areas between the sensors

that we cannot measure explicitly. However, interpolation of the pressure field allows us to

improve the estimation as can be seen from the graph on Fig. 7.11.

When the pressure on the taxels comes close to the 50 kPa (limit of the calibration) the

performance dropped, as seen when using the 3 kg mass. This can be avoided by distributing

the forces over a bigger set of taxels. This allows to correctly estimate cases where it otherwise

would not be possible using the interpolated skin estimation.

From Table 7.1, it can be seen that the simple method has a mean error of 2.7450 N and

2.0567 N if we avoid the calibration limit. Comparatively, the mean error of the interpolation

estimation is 0.6477 N and 0.4662 N respectively. This means that the interpolation method is

4 times better than the simple method.
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Fig. 7.11 Force comparison between reference force, interpolated estimation and simple

estimation.

Table 7.2 Joint torques results

Joint torques Nm Std .

Masses FT Interpolated FT Interpolated RMSE

1 kg 4.4184 4.2667 0.0189 0.0207 0.1529

1 kg * 4.7511 4.7666 0.0300 0.0216 0.0356

1.5 kg 4.4908 4.3211 0.0078 0.0117 0.1703

1.7 kg 4.5038 4.3463 0.0077 0.0135 0.1582

1.9 kg 4.5212 4.3578 0.0071 0.0233 0.1653

3 kg 4.3868 4.4806 0.0423 0.0451 0.0964

*the mass is on top off the right lower leg

Joint torque results

The root mean square error (RMSE) between the estimated torques is 0.1298 Nm on average,

as it can be verified in Fig. 7.12c . It can be observed from the first experiment ( Fig. 7.12a),

that when the motors are not so hot the skin estimation is at its best with a RMSE of 0.0356 Nm,

but after some time the estimation performance decreases due to temperature drift, as can be

seen from the rest of the RMSE values in Table 7.2.

When interacting with the environment, is likely the contacts do not have a constant force

due to the movement either of the robot or the object in contact. Fig. 7.12c demonstrates how

the estimation would respond to slight variations of the contact forces. It can be observed that

it follows the same behavior as the FT sensor.
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(a) Adding 1 kg mass on top of right lower leg (b) Hanging 3 kg mass from right lower leg

(c) Hanging 1 kg, 1.5 kg, 1.7 kg, 1.9 kg

consecutively

(d) Adding 1 kg with the angles: 90, 85, 80, 75

Fig. 7.12 Joint torque estimation results comparing force-torque sensor and skin at the knee

pitch joint.

Considering the FT sensors have been effectively used as joint torque feedback for the

current controller [106], these results allow us to consider the joint torques estimated with the

skin as a viable candidate to replace the FT measurements. Although verification might be

needed, since the joint torque estimation with skin has a higher oscillation in some cases, as

can be seen from the standard deviation in Table 7.2 and Fig. 7.12.

Is important to consider that the skin measures only normal forces and this effect can be

showcased in Fig. 7.12d and Table 7.3. Where the performance of the joint torques estimated

with the skin drop due to the angle with which the external force is applied.
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Table 7.3 Joint torque comparison at different contact angles

Degree FT sensor Interpolated avg difference RMSE

90o 5.204 5.234 0.07 0.129

85o 5.205 5.021 0.225 0.265

80o 5.188 4.886 0.304 0.319

75o 5.204 4.627 0.539 0.558

7.4 Conclusions

The estimation of contact forces using the interpolation is 4 times better than the estimation

without interpolation. This allows us to consider the estimated external forces using the skin as

a possible source of force-torque measurements.

Given the performance of the joint torque estimation, it could be considered as feedback

for the low-level torque controller described in Section 5.6.

While the experiments show results comparable to the FT sensors, using the iCub skin has

the following limitations:

• It is not possible to measure the shear forces, but only normal forces at the contact.

• Unable to detect pure torques or forces aligned with the surface of contact.

• The pressure in any given taxel should not exceed the max pressure used in the calibration.

• The temperature drift is higher than the one of the FT sensor.

This limitations from the skin prevent from using the skin as a reliable force-torque sensor

in many scenarios in which we would need a force-torque measurement.

Some of the limitations can be solved by fusing the information with the force-torque

sensors. The crucial limitation is the temperature since, after a short time it has been in contact

with an object with a considerable different temperature, the measurements become unreliable.

Even the temperature of the human body is enough to make the capacitance values to change

noticeably. This is especially troublesome since the skin has great potential for the area of

physical human-robot interaction. The temperature drift is an issue that must be solved to

improve the reliability of the skin as a force-torque sensor over time.

Using the skin as a FT sensor allowed to develop estimation algorithms for contact locations,

external forces and joint torques using only skin, joint encoders, and a single IMU. This

approach has the advantages to be easy to integrate on the robot (compared to modifying the

inner structure of the robot to include other sensors) and to be cheaper compared to other

solutions such as FT sensors or joint torque sensors.
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To the best of our knowledge, this is the first time the problem of detecting contact locations,

estimate contact forces and estimate joint torques has been effectively solved relying only upon

a whole body distributed tactile sensor, joint encoders, a single IMU and the robot model.

It allows estimating external forces when more than one external force is acting on each

sub-model, which was a limitation of the previous estimation scheme.

Next is the final chapter where a recap of the thesis is presented.



Chapter 8

Summary

In this Chapter, a summary of the thesis can be found. First, the results are confronted with the

objectives to see if they were full filled. Then, some conclusions on force-torque sensing are

shared. Finally, the ideas for future work are mentioned.

8.1 Recap on Objectives

In this section, a comparison between the work done and the objectives is presented.

8.1.1 Deep understanding of force-torque (FT) sensors

By studying the technologies available for force sensing, it was possible to understand why the

silicon strain gauge is the main technology used for force sensing. It was possible to justify the

linear model assumption looking at the piezoresistive behavior of this technology.

Looking at how force-torque sensing is used in robotics gave a good perspective of the expecta-

tion of this kind of sensors. Allowing to evaluate the impact of improving their measurements

and the direction to take to achieve this.

Revising the methods for calibration of sensors in general permitted to broaden the view of

how to choose the appropriate function based on the principles of the sensing element.

The need for multiple linear regression for silicon based six axis FT sensors and a polynomial

function for capacitive tactile arrays became evident.

Designing evaluation tools targeting the performance of sensors already mounted in the robot

was crucial for understanding the sources of error of six axis FT sensors. It also permitted

to further understand the sensors by providing easy and intuitive ways to evaluate the perfor-

mance. By understanding the sources of unreliability of the sensors, it was possible to address

effectively the improvement of performance of the sensors.
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8.1.2 Improvement of force-torque sensors’ performance

The main source of improvement presented is the use of in situ calibration methods. More

specifically the Model Based In Situ Calibration method. Which was created and refined during

the whole PhD. Since the improvement is tailored to the use of the robot, the benefits are

guaranteed to impact positively the performance of the robot.

The developed method has the advantage of including other variables as long as their behavior

can be considered almost linear. To the best of my knowledge, this is the only in situ method

able to effectively cope with other phenomena that might affect the measurements of the sensor.

Tests suggest that through the use of this method the offset can be considered constant and

be estimated. This eliminates the need for re-estimating the offset of the robot every time

an experiment is scheduled. An analysis of the kind of excitation required for the sensor’s

calibration is shown. Insights on how to use this method depending on the amount and type of

data available are provided.

Another way to improve the performance of the force-torque sensors is by reducing the error in

the ex situ calibration procedure. To this aim, a calibration device aimed to be fast, repeatable

and reduce chances of human error was envisioned. The excitation is proven to be better than

the currently used in the IIT-produced six axis FT sensors and quite comprehensive in general.

In the final stage of the design, it will be able to account for temperature and the dynamic

response of the sensors as well.

The skin shows promising potential as a force-torque sensor. It can be successfully used

to estimate multiple contact forces individually. This might enable more complex response

algorithms for floating base robots. Unfortunately, it suffers from a fast drift that prevents its

extended use. It might also be limited in the sensing range, but knowing the technology is

possible to find a solution either by changing the dielectric material, the signal conditioning or

improving the calibration procedure.

8.1.3 Increase performance of dynamical motions in floating base robots

through the use of force-torque sensing

Improvements in the performance of dynamical motions were observed after providing the

improved FT measurements to the robot. Improvements in the contact force estimation were

visible through the tests of the offset when switching contacts. The improved measurements

allowed the robot to walk after the calibration of the sensors was applied. The benefits of the

improved measurements have a direct impact on the performance of the low-level controller

and a bit indirect in the balancing controller. Nonetheless, smoother transitions between states
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were observed after the in situ calibration. In general, it allows to trust the force-torque sensing

information which results in better feedback information for the controllers. It enables the

possibility to use this information directly in high-level controllers.

8.2 Conclusions

The expected excitation of the sensors mounted in a floating base robot are different from

fixed based robots where FT sensors have been mostly used. So these sensors might be able to

perform better in dynamic scenarios by adapting their behavior to the expected use in floating

base robots. An example is that sensors typically have a symmetrical full scale, but their

excitation will rarely reach both sides of the scale. A simple case is the sensors at the foot

position, they might experience almost all the weight of the robot in one direction, but unless

they are hanging from the same foot must likely the excitation in the other direction will be

much smaller.

Given the technology employed in the sensors used during the PhD, the multiple linear regres-

sion is an appropriate approximation function to calibrate them.

The main causes of unreliability are the change of behavior after mounting, silicon dependency

on temperature and saturation. All three can be addressed by employing in situ calibration

techniques. Saturation can be dealt by adjusting the range of the sensor to the actual use of

the robot. Change in behavior and temperature dependency can be addressed by the proposed

Model Based In Situ Calibration method. This method also deals with the offset variability.

The success of using the offsets estimated during calibration proves that the main source of

drift in the sensors is the temperature. This should increase the reliability of the sensors in long

periods of time.

The developed In Situ Method proposed different estimation types. Each can be exploited based

on amount and type of available data.

There are clear benefits of calibrating in situ, as seen from the change in the performance of the

robot after applying the calibration matrices estimated in situ.

It is possible to generate a comprehensive excitation of the six axis FT sensors with three

degrees of freedom. Is enough to have two actuated degrees of freedom and one degree of

freedom with just two configurations. Calibration procedures should aim to reduce the possible

sources of error while increasing repeatability and reducing the complexity of use. This is

possible with the design of iCalibrate.

A benchmark for calibration of six axis FT sensors could be created using the proposed calibra-

tion device. This may allow for easy comparison of different calibration algorithms and models

as well as evaluate and compare the performance of different sensors.
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The skin shows potential to correctly identify multiple contacts on the same sub-model. Even

in the absence of other force-torque sensing sensors. The problem of drift is the major issue

preventing reliable use of the skin as force-torque sensor.

8.3 Future Work

It is worth exploring other types of models and algorithms for the six axis FT sensors. There

might be complementary models to the linear part to account for the small non-linearities of the

silicon strain gauges. Other possible sources of non-linearities to consider are complex loading

scenarios coupled with temperature variation.

A useful problem to solve is the calculation of a full scale that is more coherent with how the

sensor works and will be excited. This implies a different way to estimate the full scale of the

sensor. On the same line the possibility of having an asymmetrical full scale could help further

adapt the sensor to comply with the real excitation they are subjected in floating base robots.

Performing temperature compensation on the skin may allow using the skin as a force-torque

sensor over extended periods of time. Temperature compensation models for the capacitance

should be studied. Explore solutions that allow measuring shear forces to complement the

shortcomings of the skin.

We shall look for other ways to improve the estimation of force-torque related quantities. The

information of the FT sensors, the skin and possibly the motor current could be fused to improve

the estimation of external force-torques and joint torques, beyond the existing current results.

Make use of the acquired knowledge with force-torque sensor technologies in the development

of wearable sensors and the study of dynamics in human subjects should be feasible.

Finish the design and building a prototype of the iCalibrate is a must. Since it can later be

used as a benchmark for different calibration algorithms. This way a more accurate method

for calibration can be found and compared to the current approach. It is also interesting the

possibility to perform reliable dynamic calibration of the sensor even in complex loading

scenarios. This should allow to adapt the calibration procedure to the expected use and

environmental conditions of floating base robots. This is something currently lacking and might

be holding back to the reliability of dynamic behaviors in floating base robots. It may also

allow for the accelerated testing of FT sensor prototypes and help design improved sensors.

Finding a more objective way to evaluate the performance of dynamic motions in floating

base robots can allow for a clearer idea of the improvements of FT measurements. This could

also lead to the development of high-level controllers that can fully exploit the feedback from

force-torque sensors in complex scenarios. Allow floating base robots to exploit the generation,
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use and breaking of contacts through the development of such high-level controllers is alluring

as well.
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Appendix A

Experimental Resources

This Chapter contains the detail of the resources used in the research presented in this thesis.

Mainly specifications of the sensors and a description of the experimental platform.

A.1 Experimental Platform

The experimental platform is the iCub. It is a humanoid robot developed by the iCub Facility at

the Italian Institute of Technology. It is a child-sized humanoid robot originally developed by

the RobotCub European Project for research in embodied cognition [114].

It is 104 cm tall, weighs around 33 kg and has 53 degrees of freedom (DoF). The DoFs are

distributed as follows: 6 for each leg, 3 for the torso, 6 for the head and eyes, 7 for each arm

and 9 for each hand. One additional servo motor is used to open and close the eyelids. In this

thesis, we consider only a subset of 32 DOFs (legs, torso, arms, and neck) that are actuated

with Brushless DC electric motor (BLDC) with an Harmonic Drive transmission, making them

suitable for joint torque control. The version of iCub used is known as 2.5. More details on

the actuation and mechanics of the iCub 2.5 can be found in [104]. An image of the robot is

presented in Fig. A.1.

The iCub has various sensors including inertial measurement units (IMU), force-torque

(FT) sensors, cameras, microphones, joint encoders and tactile sensor arrays, that cover the

surface of the robot. Six custom-made six axis FT sensors (described in A.2.1) are placed as

shown in Fig. A.2. The force-torque sensors mounted on the arms of iCub are Strain 1. The

ones in legs and feet are now Strain 2.

The distribution of the skin on the robot can be observed in Fig. A.2. The skin of iCub is

described in A.2.3. The skin of iCub is calibrated using the vacuum bags, to create a uniform

pressure distribution on the skin’s surface that enables us to relate the capacitance value to
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Fig. A.1 iCub 2.5, code name iCubGenova04

the applied pressure [66]. Therefore, we are able to know the pressure that is applied to each

separate sensor in the array.

The interface to interact with the iCub is through Yet Another Robot Platform (YARP).

More specifically, YARP supports building a robot control system as a collection of programs

communicating in a peer-to-peer way, with an extensible family of connection types (tcp, udp,

multicast, local, MPI, mjpg-over-http, XML/RPC, tcpros, ...) that can be swapped in and out.

A.2 Available Sensors

The thesis is focused on sensors that can be directly used as force-torque sensors. Therefore,

the main sensors are six axis FT sensors and tactile sensor arrays. During the research, there

were three varieties of six axis FT sensors. Two of them produced in IIT and an ATI mini 45

acquired for comparison. The RoboSkin is an artificial skin based on capacitive tactile sensor

arrays. By mounting it in the covers of the robot, the sense of touch is distributed through the

whole body of the robot.
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(a) The six axis FT sensors location on the iCub. (b) Skin distribution on the iCub.

Fig. A.2 iCub sensors used to estimate external sensors

A.2.1 FTsense

The FT sense is a custom force-torque sensor produced in Istituto Italiano di Tecnologia

(IIT) [45]. It has silicon strain gauges in Wheatstone bridge configuration. The signal condi-

tioning and the analog to digital converters are embedded in the sensor. During the research,

a new version of the sensor became available. To distinguish between them, the first will be

called Strain 1 and the new Strain 2.

For both versions the maximum bandwidth is 500 Hz. Its dimensions are the same and can be

seen in Fig. A.4. The orientation of the coordinate frame can be seen in Fig. A.5. They have

a "Y" shape elastic element and provide six raw measurements also called channel signals,

Fig. A.3.

Many FTsense Strain 1 and 2 where available for analysis due to the replacement of sensors on

the robot and availability of different robots.

The ADC has a resolution of 16 bits. The sensors have a negative and positive measurements

therefore the limit of the ADC is ±32768. The sensor saturates if any individual channel
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reaches that value.

Fig. A.3 Ftsense elastic element.

Fig. A.4 Ftsense CAD drawing.

Fig. A.5 Coordinate Frame of FTsense.

Strain 1

The embedded electronics specifications are:
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Fx ,Fy Fz Tx,Ty Tz

Range 1500 N 2000 N 35 Nm 25 Nm

Resolution 0.25 N 0.25 N 0.005 Nm 0.004 Nm

Table A.1 Ftsense strain 1 range specifications

• Power supply:5 V ±10%, current consumption max 100 mA, provided from CAN Bus

connector.

• Communication :CAN Bus 2.0B, 1 Mbps Channels.

• Output data :16 bit, 6 channels, up to 1K messages/sec.

• Microcontroller :dsPIC30F4013 16 bit,30 MIPS, 48 K Flash, 2 K RAM, CAN, SPI.

• A/D Converter :16 bit, 250 ksps.

• Gain settings :Fixed analog gain.

• Offset correction :digital offset correction.

Unfortunately, the Wheatstone bridge configuration inside the sensor was designed for

amplification of the signal, not for temperature compensation. Having a configuration for

temperature compensation would have higher constraints in the arrangement of the strain

gauges. Details on the range of the sensor can be seen in Table A.1. It weights 0.122 kg. Its

dimensions are 45 mm of diameter and 18.4 mm of height.

Strain 2

Similar to Strain 1 no temperature compensation was done at hardware level. Nonetheless,

the presence of extra sensors such as temperature sensors and IMU allow the possibility to

explore software compensation. This extra information coupled with the option of variable

gains allow for a much greater potential of the sensor. The temperature sensor was placed

within 2 mm of the strain gauges.

The embedded electronics specifications are:

• Power supply:5 V ±10%, current consumption max 100 mA, provided from CAN Bus

connector.

• Communication :CAN Bus 2.0B, 1 Mbps Channels.

• Output data :16 bit, 6 channels, up to 1K messages/sec.

• Microcontroller :STM32L4 Cortex M4 32 bit, 100 DMIPS, 512 KB Flash, 64 KB RAM,

CAN, SPI, A/D.
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Fx ,Fy Fz Tx,Ty Tz

Range 580 N 1160 N 20 Nm 20 Nm

Resolution 0.25 N 0.25 N 0.005 Nm 0.0026 Nm

Table A.2 ATI mini 45 range specifications

• A/D Converter :16 bit, 250 ksps.

• Gain settings :6 Independent Programmable Gain Amplifiers.

• Offset correction :digital offset correction.

• Additional Sensors :2 digital temperature sensor , 1 BOSCH IMU.

The sensor range and resolution vary due to the selected gains and the calibration procedure.

The gains range are from 2.67 up to 9600. Higher the gain means higher sensitivity, so less

force/torque range and higher accuracy.

So far using the gains [08,24,24,10,10,24], the sensor has been successfully used in a range

of 800 N Fz, 20 Nm Tx and Ty, the excitation of the other axis were much lower.

A.2.2 ATI mini 45

The ATI Mini45 has a compact, low-profile design with high capacity and a through-hole to

allow passage of linkages or cables, Fig. A.6. Made from high yield-strength stainless steel.

With maximum allowable overload values are 5.7 to 25.3 times rated capacities. It uses silicon

based strain gauges. This signal is amplified, resulting in near-zero noise distortion. It requires

a netbox which outputs an Ethernet connection. The maximum bandwidth is 7000 Hz. The

maximum amount of error for axis varies between 1.75% and 1% of the full scale. Details can

be found in Table A.2. The ATI mini 45 was selected because the range was similar to the

FTsense Strain 1. The mechanical structure was also very similar. This allowed to mount the

sensor in the robot without the need of many adaptations. Special consideration had to be made

since the orientation of the coordinate frame is different than the FTsense.

Fig. A.6 ATI mini 45.
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A.2.3 RoboSKIN

The skin of iCub [21] is an array of capacitive pressure sensors composed of the flexible printed

circuit boards (fPCB) covered by a layer of elastic fabric further enveloped by a thin conductive

layer. As the skin is touched (i.e. pressure is increased), the distance between the capacitive

sensors and the conductive layer decreases and therefore the capacitance increases. However,

the sensors output the inverted values of the capacitance, and therefore the raw capacitance

values of the sensors tend to decrease as the pressure is increased. Each sensor has 8 bits of

resolution.

The skin is composed of triangular modules of 10 sensors each (shown on Fig. A.7), which

act as capacitive pressure sensors, plus two temperature sensors for drift compensation. The

temperature compensation is achieved by having two taxels that do not change capacitance

based on the distance to the dielectric layers. This would imply that their change would only be

induced by temperature change. The difference is then subtracted from the other taxels in the

same triangle. This kind of temperature compensation works mainly for temperature change

coming from the inside to the outside. The tactile sensors have a measurable pressure range up

to 180 kPa [12]

The skin of iCub is divided into skin patches (also known as skin pieces) that consists of

the mentioned triangular modules. The iCub has skin patches for forearms, arms, hands, torso,

upper and lower legs. This patches can be appreciated on Fig. A.1, the distribution shown is

mirrored under the covers on the other side. A single skin patch of iCub can have more than

500 individual tactile sensors. The skin is mainly used to detect contact locations.

Fig. A.7 Patch of RoboSKIN.
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Images from Sphere Analysis Tool

B.1 Mounting Tests

Here all the graphs from the 3rd trial of each test is shown.

(a) x-y plane (b) y-z plane (c) Norm over samples

Fig. B.1 iCubGenova04 robot sensors ellipsoids, left leg 2Nm experiments

(a) x-y plane (b) y-z plane (c) Norm over samples

Fig. B.2 iCubGenova04 robot sensors ellipsoids, right leg unknown torque values experiments
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(a) x-y plane (b) y-z plane (c) Norm over samples

Fig. B.3 iCubGenova04 robot sensors ellipsoids, right leg 1.5Nm experiments

(a) x-y plane (b) y-z plane (c) Norm over samples

Fig. B.4 iCubGenova04 robot sensors ellipsoids, right leg 1Nm experiments

(a) x-y plane (b) y-z plane (c) Norm over samples

Fig. B.5 iCubGenova04 robot sensors ellipsoids, right leg 0.5Nm experiments
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(a) x-y plane (b) y-z plane (c) Norm over samples

Fig. B.6 iCubGenova04 robot sensors ellipsoids, right leg mixed1-2Nm experiments

(a) x-y plane (b) y-z plane (c) Norm over samples

Fig. B.7 iCubGenova04 robot sensors ellipsoids, right leg mixed2-1Nm experiments
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Getting 3D taxel positions and normals

The following steps are required to obtain the 3D taxel positions and the Normals.

Identify using the electronic logic documentation of the piece of skin and match the id of

the spread sheet in which the id information is contained as in Fig. C.1. Since, the diagrams

Fig. C.1 Match circuit logic with spread shit ID.

in the spreadsheet and the electronic circuit are from different views. The correct location is

found by mirroring the image and then using a rotation by 90o. This way the position of the

piece of skin matches the position in the spread sheet diagram. Example shown in Fig. C.2.

In the spread shit looking at the position and the number in the diagram the actual ID of the

triangle can be identified following the logic depicted in Fig. C.3. Using this information the

ID of the triangles can be stored. It is useful to add the information using the images of the

mounting process documentation. That way we first match the ids into the 2D skin like in Fig.
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Fig. C.2 Transformations required to match ID of files.

Fig. C.3 Finding the triangle ID

C.4. Later, we can identify which holes in the cover are actually covered by the skin and which

holes are not by looking at the mounted skin as in Fig. C.5.

Fig. C.4 Cover and skin with number id.
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Fig. C.5 Numbers on Skin mounted on cover.

This information is useful when adding the frames in the CAD model. An image with the

holes identified to be used and the ones that are not in the CAD format is used as base to add

the frames. Example in Fig. C.6. The resulting frames are exported to a shrinkwrap which is

the format actually used during the simmechanics export. They contain only the 3D position of

the center of the triangle. The frames in the shrinkwrap are showed in Fig. C.7.

The cad is then exported to URDF including the new triangle center frames by following

the simmechanics-to-URDF procedure as described in icub-mmodel-generator. The QR code

for the link to the wiki/tutorial for the process can be found in Fig.C.8.

The export process includes a hard coded knowledge of the the reconstruction in 2D of the

triangles and a interpolation procedure to get the 3D position and the normals of the taxels. The

result is shown in Fig. C.9.
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Fig. C.6 CAD with identified centers to use.

Fig. C.7 Frames added on CAD model.
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Fig. C.8 QR for link to simmechanics to urdf tutorial.
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